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Acquiring Diverse Predictive Knowledge in Real Time by
Temporal-difference Learning

Joseph Modayil and Adam White and Patrick M. Pilarski and Richard S. Sutton1

Abstract. Existing robot algorithms demonstrate several capabil-
ities that are enabled by a robot’s knowledge of the temporally-
extended consequences of its behaviour. This knowledge consists of
real-time predictions—predictions that are conventionally computed
by iterating a small one-timestep model of the robot’s dynamics.
Given the utility of such predictions, alternatives are desirable when
this conventional approach is not applicable, for example when an
adequate model of the one-timestep dynamics is either not available
or not computationally tractable. We describe how a robot can both
learn and make many such predictions in real-time using a standard
reinforcement learning algorithm. Our experiments show that a mo-
bile robot can learn and make thousands of accurate predictions at 10
Hz about the future of all of its sensors and many internal state vari-
ables at multiple time-scales. The method uses a single set of features
and learning parameters that are shared across all the predictions. We
demonstrate the generality of these predictions with an application to
a different platform, a robot arm operating at 50 Hz. Here, the pre-
dictions are about which arm joint the user wants to move next, a dif-
ficult situation to model analytically, and we show how the learned
predictions enable measurable improvements to the user interface.
The predictions learned in real-time by this method constitute a ba-
sic form of knowledge about the robot’s interaction with the environ-
ment, and extensions of this method can express more general forms
of knowledge.

1 Introduction

A robot’s ability to make real-time predictions about the conse-
quences of its behaviour supports several additional capabilities. Ex-
amples of robot capabilities built on real-time predictions include
collision avoidance [Fox et al., 1997], stability [Abbeel et al., 2010],
and motion planning [LaValle, 2006]. The conventional approach to
make these predictions is to manually construct a small one-timestep
model of the system dynamics offline, and then, during real-time
operation, to make temporally-extended predictions by simulating
future trajectories with the model. However, this approach requires
a one-timestep model of the dynamics to be available, and it re-
quires computationally expensive simulations with the model to pre-
dict quantities of interest.

We propose an alternate approach for real-time predictions,
namely to learn to directly predict the temporally-extended conse-
quences of a behaviour in real-time. This is the technique used for the
critic’s value function in an actor-critic based method. We demon-
strate that this direct approach scales well for learning and making

1 Reinforcement Learning and Artificial Intelligence Laboratory, Department
of Computing Science, University of Alberta, Canada. email: {jmodayil,
awhite, pilarski, sutton} @cs.ualberta.ca

many temporally extended predictions in parallel, and thus poten-
tially opens the door to new robot capabilities.

The main contribution of this work is an empirical demonstration
that thousands of temporally-extended predictions can be learned on-
line in real-time with high accuracy. The predictions are in the form
of questions about future sensor values and internal state bits. We
demonstrate that a mobile robot can both learn and make thousands
of predictions in real-time. In our first experimental setting, predic-
tions are made every 100ms, and the predictions are about the robot’s
future sensor readings and internal state variables either at the next
timestep in 100ms, or over the next short time scale of 0.5, 2, or 8
seconds. These predictions provide the robot with immediate knowl-
edge about many distinct, temporally extended consequences of its
behaviour. In a second experimental setting, we demonstrate the gen-
erality of these predictions by evaluating how they can improve the
user interface for a robot arm.

The approach is novel in several respects. The predictions have
the benefit of scientific empiricism—the predictions can be evalu-
ated for their accuracy by comparison to the robot’s future expe-
rience. Although directly learning the temporally extended conse-
quences of behaviour is not a common way of representing knowl-
edge in robotics, these predictions can also be assembled to form a
conventional one-timestep model of the dynamics. The ease of ac-
quiring this knowledge, the generality of the method, and known ex-
tensions to the prediction algorithm, suggest that this is a promising
direction for further investigation.

The paper is structured as follows. First, we present the method to
describe the learning setting precisely. Then, we show results from
our experimental evaluation of the method on a mobile robot. We
then demonstrate the generality of this method with an application to
the completely different domain of predictions for a human-guided
robot arm. After describing related work, we discuss how this method
can be extended to more general forms of predictions.

2 Method

The method relies on learning many temporally-extended predic-
tions, so we first review the underlying temporal-difference pre-
diction algorithm TD(λ) [Sutton, 1988]. As input at each timestep
t ∈ N, the algorithm receives the feature vector xt ∈ Rn. The
feature vector is the robot’s description of the state of the environ-
ment st. Note that the description provided by xt will be restricted
to features that the robot can readily compute, and this is typically
an incomplete characterization of the state of the environment. Each
predictive question pertains to some signal rt ∈ R that is observed
at each timestep. The signal is called the reward in reinforcement
learning, but here it is an arbitrary target signal and does not indicate
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a quantity that the robot wishes to maximize. We assume that the
robot is following a fixed behaviour and the question is to predict the
return, Gt, which is the discounted sum of the target signal observed
in the future,

Gt =

∞X
k=1

γk−1rt+k, (1)

where γ is a constant. A particular choice of γ will focus the question
on either the next timestep (note γ = 0 implies Gt = rt+1) or
over an extended temporal horizon for γ ∈ (0, 1). The linear TD(λ)
algorithm learns to approximate the return by a linear function of the
feature vector xt, with

ĝ(xt) = θ>t xt, (2)

where θt ∈ Rn. Prediction is computationally efficient in that the
time and space requirements are linear in the feature vector size. The
TD(λ) algorithm adjusts the weight vector θt at each timestep to re-
duce the error between predictions on adjacent timesteps with the
following update rules.

δt = rt+1 + γθ>t xt+1 − θ>t xt (3)

et = γλet−1 + xt (4)

θt+1 = θt + αδtet (5)

Here et ∈ Rn is called the trace (and is initialized to the zero vector),
and α ∈ [0, 1) is a step size parameter. The value λ ∈ [0, 1] is
the trace decay parameter. When λ = 1 and α is slowly decreased
over time to zero, this algorithm converges to a weight vector θ∗ that
minimizes the squared error between the predictions and the return.
However, the algorithm is often used with λ < 1 for faster learning,
and with α set to a constant value to enable adaptation to a dynamic
environment. Note that the update at each timestep requires time that
is linear in the feature vector size.

Under common assumptions [Sutton and Barto, 1998], the update
rules will adapt ĝ to approximate g, a general value function that is
the expected value of the return when starting at the environmental
state s.

ĝ(x(s)) ≈ g(s) ≡ E[Gt|St = s]

A common oversight is to consider TD(λ) as only appropriate
for learning a value function that describes the robot’s behaviour.
It is in fact a general algorithm for making multistep predictions,
and was described as such when introduced [Sutton, 1988]. Although
this algorithm is often used in reinforcement learning to pursue goal-
directed behaviour, it can be used for an arbitrary function rt of state.

We propose taking advantage of the computational efficiency of
the TD(λ) algorithm to learn a set of m predictions,

{(r(1), γ(1)), . . . , (r(m), γ(m))}

that can be learned and predicted in parallel from the single stream
of robot behaviour. Each predictive question has its own target signal
r and constant γ. As the learning and prediction algorithms are both
linear in the n-dimensional feature vector, the computational com-
plexity and memory requirements of this approach grow as O(mn),
which on modern computing systems enables the use of many fea-
tures and many predictions in real-time. Moreover, this approach is
intrinsically parallel and decoupled, which enables flexible deploy-
ment on parallel computing architectures.

The goal of learning to make many predictions in parallel and in
real-time on a robot raises different issues than are often considered

for reinforcement learning experiments. In particular, manually tun-
ing the learning parameters for each question is impractical. Instead,
the learning parameters should enable stable learning. As such, val-
ues for α and λ are shared across all the questions. Furthermore, the
feature vector is shared across all the questions. This problem set-
ting encourages the use of diverse features and a large feature vector,
to enable learning better predictions for the diverse set of questions.
Note that in the online setting with an abundance of data, increasing
the space of features is generally not harmful.

We define this scenario of learning and predicting, in real-time on
a robot as in situ learning. Two competing desires for in situ learning
must be balanced. First, learning and prediction are often only one
piece of the larger system, so their computational and memory foot-
prints should be reasonable. Second, the predictions should exhibit
accuracy within the robot’s lifetime. Several approaches in robot
learning are computationally expensive but learn from limited experi-
ence. However, modern robots have extended operational lifespans of
days and years, so computationally efficient real-time algorithms can
run on top of these operational systems with little overhead, and po-
tentially enable substantial learning to occur directly from the stream
of robot experience.

Figure 1. A robot performing a regular though non-periodic behaviour of
following the walls in the pen. A lamp shines in one corner of the pen, and its
light is observed by some of the robot’s sensors.

3 Evaluation
To evaluate the practicality of the above method on a real system we
considered nexting predictions, namely predictions about the future
value of sensors (and many feature vector components), at a variety
of time scales2. By predicting what will happen next, the robot gained
a basic knowledge of its interaction with the environment. The robot
performed an extended wall-following behaviour in a small pen (Fig-
ure 1). The observation stream contained both repeated events (such
as passing a light, driving forward, and periods when the motors are
cooling off), along with fine structure (such as variations in the ac-
celerometers without readily apparent structure). The behaviour ex-
hibited substantial variations, for example the time to complete a loop
of the pen varied from 20 to 40 seconds, and there were seven-minute

2 This experiment is described with additional details in
[Modayil et al., 2012]
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resting periods with no motion to allow the motors to cool off. Ev-
ery 100ms, the robot generated an observation vector with 53 com-
ponents. They cover 11 different sensing modalities and 4 software
variables that are listed in Figure 2.

Sensor Group Group Tiling Type (resolution,
Size tilings)

IRDistance 10 strip (8,8)
strip (2,4)
skip(0) (4,4)
skip(1) (4,4)

Light 4 strip (4,8)
skip(0) (4,1)

IRLight 8 strip (8,6)
strip (4,1)
skip(0) (8,1)
skip(1) (8,1)

Thermal 8 strip (8,4)
Rotational Velocity 1 strip (8,8)
Mag 3 strip (8,8)
Accel 3 strip (8,8)
MotorSpeed 3 strip (8,4)

skip(0) (8,8)
MotorVoltage 3 strip (8,2)
MotorCurrent 3 strip (8,2)
MotorTemperature 3 strip (4,4)
OverheatingFlag 1 strip (2,4)
LastAction 3 strip (6,4)

Figure 2. Summary of the tile-coding strategy for producing the feature
vector from the sensory observations. Sensors values in each group were tiled
either singly (strip tilings) or jointly pairwise (skip tilings). The last column
indicates how many tilings of each type were made for each sensor or sensor
group, and how many intervals (resolution) were involved in each dimension
of each tiling. See text for explanation.

The observation vector is transformed into the agent’s representa-
tion xt by tile coding. This produced a binary vector, xt ∈ {0, 1}n,
with a constant number of 1 features (see [Sutton and Barto, 1998]
for more details on tile coding, in short a tile coder maps data from a
continuous domain into a binary representation by a set of indicator
functions whose support tile the continuous domain). The features
provided no history and performed no averaging of sensor values.
The tile coder was comprised of many overlapping tilings of indi-
vidual sensors and pairs of sensors (see Figure 2). The resolution
of a tiling refers to the number of uniform partitions per dimension.
When multiple tilings covered a space, each had a random offset.
The sensory signals were partitioned based on sensor modalities into
IR(InfraRed)Distance, Light, Thermal, IRLight, MotorSpeed, Mo-
torCurrent, MotorVoltage, MotorTemperature, Acceleration, Magne-
tometer and LastAction. Within each sensor group, each individ-
ual sensor (e.g., Light0) was tiled independently as multiple one-
dimensional overlapping grids called strip tilings. Additionally, pairs
of sensors within a group (e.g., IRLighti and IRLightj) were tiled to-
gether using multiple two-dimensional overlapping grids. The two-
dimensional grids combined sensors in one of two ways. When they
combined sensors within a group that were directly spatially adja-
cent on the robot, we call it a skip(0) tiling, whereas a skip(1) tiling
combines sensors that are spatially adjacent with a skip of one (e.g.,
IRDistance1 with IRDistance3, IRDistance2 with IRDistance4, etc.).
All in all, this tiling scheme produced a feature vector with n = 6065
components, most of which were 0s, but exactly 457 of which were
1s, including one bias feature that was always 1.

We applied TD(λ) to learn 2160 predictions in parallel. For the
first 212 predictions, the target signal, r

(i)
t , was the sensor reading

of one of the 53 sensors listed in Figure 2 and the discount rate
was set to one of four timescales; for the remaining 1948 predic-
tions, the target signal was set to one of 457 randomly selected bits
from the feature vector and the discount rate was again set to one
of four timescales. The discount rate γ(i) was one of the four values
in {0, 0.8, 0.95, 0.9875}, corresponding to time scales of approxi-
mately 0.1, 0.5, 2, and 8 seconds respectively. For each question, the
step-size parameter is set to α = 0.1

457
( 1
10

th of the number of active
features), and the trace parameter is set to λ = 0.9. The initial weight
vector was initialized to 0.

An initial performance question is scalability, in particular
whether so many predictions can be made and learned in real time.
We found that the total computation time for a cycle under our con-
ditions was 55ms, well within the 100ms duty cycle of the robot. The
wall-following policy, tile-coding, and the TD(λ) learning algorithm
were all implemented in Java and run on a laptop connected to the
robot by a dedicated wireless link. The laptop used an Intel Core 2
Duo processor with a 2.4GHz clock cycle, 3MB of shared L3 cache,
and 4GB DDR3 RAM. The system garbage collector was called on
every timestep to reduce variability. Four threads were used for the
learning code. For offline analysis, data was also logged to disk for
120000 timesteps (3 hours and 20 minutes). The total memory con-
sumption was 400MB. Note that with faster computers, the number
of predictions or the size of the weight and feature vectors can be in-
creased at least proportionally. This strategy for prediction should be
easily scalable to millions of predictions with foreseeable increases
in parallel computing power over the next decade.
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Figure 3. A plot of the returns for one light sensor. The sensor readings
exhibit sharp changes when the robot passes the lamp. The returns for each
question are computed at the end of the experiment.

Next, we consider one of these nexting predictions in detail. Each
question asks what will happen next over a relatively short, but
temporally-extended, time scale. Consider the robot’s ability to an-
ticipate when one of its light sensors will be saturated as it passes
the lamp in one corner of the pen. Examples of returns for different
time-scales are shown in Figure 3. The returns for each question are
computed from the stored log of observations using Equation 1. For
each point in time t, the value of the return constitutes the empirical
ground truth answer for the question.

Once the returns are computed offline, they can be compared to
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Figure 4. The learned prediction of TD(λ) closely matches the return, and
the predictions are qualitatively similar to the best predictions that can be
made with the given features (the best linear predictor for these features was
computed offline). The prediction also has the desired qualitative structure of
rising in advance of changes in the light signal (the observation).

the predictions that were made in real-time during the experiment, as
seen in Figure 4. The predictions in the graph show a clear example
of anticipating the increase in light. The return and the learned pre-
diction are in close correspondence. The performance of the learned
predictions is also similar to the performance of the best weights,
θ∗, that minimize the mean squared error on the dataset, which were
computed offline for the given set of features.
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Figure 5. The observations, returns and predictions from a temporal win-
dow aligned at the event of the onset of light saturation. An average over
100 events shows the performance in the mean. The learned predictions are
closely aligned with the returns and the offline optimal answers in the mean.

The solution quality for this question around a significant event is
examined by aligning fixed length windows at the onset of light sat-
uration. Within each window, the values for the observations, returns
and predictions were averaged over the 100 events. Figure 5 shows
that the predictions and the returns are well-matched in the mean.

Having demonstrated that accurate prediction is possible, we now
consider the rate of learning in Figure 6 by comparing the root mean
square errors of the prediction algorithms as compared to the true
returns computed from future experience. We can see that the error
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Figure 6. Learning curves for the 8-second light sensor nexting predictions.
The predictions have had their root mean squared error (RMSE) scaled by

1
1−γ

. The graph compares the errors of different learning algorithms. The
jog in the middle of the graph occurs when the robot stops by the light to cool
off its motors, causing the online learners to start making poor predictions.
In spite of the unusual event, the TD(λ) solution still approaches the offline-
optimal solution. TD(λ) performs similarly to a supervised learner TD(1),
and they both slightly outperform TD(0). The curve for the bias unit shows
the poor performance of a learner with a trivial representation.

comes down quickly for all the online algorithms. The comparison
to the predictive performance of the offline-optimal solution shows
a vanishing accuracy gap with TD(λ) by the end of the experiment.
For contrast, we also show the learning curve for a trivial represen-
tation consisting only of a bias unit (the single feature that is always
1).
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Figure 7. The presented method learned to answer 2160 questions in real-
time about future sensor observations generated by the mobile robot’s be-
haviour. The questions pertain to the expected values over the near future at
timescales of 0.1, 0.5, 2, and 8 seconds. Only a handful of the learned predic-
tions about sensors and features are shown above; sensors are diverse and in-
clude motor temperatures, currents, voltages, light sensors, infrared light sen-
sors, ambient temperature, magnetometers, accelerometers, and others. The
predictions are made in real-time at a rate of 10Hz. The answers have sub-
stantial accuracy; the error shown for each prediction is normalized by the
observed variance (Equation 6). Moreover, substantial learning is achieved
within the first 30 minutes of experience, as is seen in the error curve for the
average performance.
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Figure 7 demonstrates a key result, namely that many accurate an-
swers to predictive questions can be learned in parallel from standard
robot behaviour. To compare the accuracy of the different questions,
the prediction errors are normalized by the sample variance of the
returns for each question over the entire dataset. This yields a nor-
malized squared return error (NSRE),

NSRE(ĝi, t) =
1

t

Pt
k=0(ĝ

i
k − gi

k)2

Var(gi)
. (6)

The NSRE value represents the percentage of the variance in the re-
turn that remains unexplained by the predictor.

For every question, we can observe in Figure 7 that the error de-
creases along an exponential curve. Substantial learning occurs in
the first 30 minutes, but errors continue to decrease with additional
experience. Note that the error expresses the percentage of the sam-
ple variance unexplained, and that for every question this falls below
1. Thus, the answers are non-trivial even for a noisy sensor such as
an accelerometer at long time scales—the answers learned by the
system with the given experience and choice of representation out-
perform the best constant prediction for every single question. This
highlights the potential benefit from large informative feature sets.

These results demonstrate our novel and somewhat surprising
claim that it is practical to acquire a broad range of knowledge in
real time directly from experience. We have shown a method with
a sound theoretical foundation that learns answers to thousands of
different empirical questions in practice, from regular robot experi-
ence. The method is scalable in the number of questions and features,
as the amount of computation is linear in each. It is robust in prac-
tice, as no individual tuning is required for the different questions.
It supports parallel implementation, which was used in dividing the
computation across multiple threads. This method provides access to
knowledge about multiple timescales while operating at a single fast
timescale. This is an impressive set of properties.

Viewed from another perspective, this approach is one way to en-
able robots to tap into the phenomenon of big-data in machine learn-
ing, namely that large, simple, discriminative methods will outper-
form small, complex, generative models when given sufficient data.
Substantially more structure often exists in the robot’s experience
than is predicted by small generative models. This has been seen in
several domains, including games, search engines, recommender sys-
tems, and even in Jeopardy. The method described here is one simple
way to provide a robot with immediate access to knowledge about
many facets of its observable existence. This is both different from
the way knowledge is typically considered on a robot, and opens the
door to methods that can leverage a diverse body of knowledge.

4 An Illustrative Application

The method generalizes to any robot, and now we describe an ap-
plication to a robot arm.3 This application also shows how pre-
dictive empirical knowledge can be interesting, potentially use-
ful, and difficult to acquire by other means. This demonstration
takes as its setting the problem of human-machine interaction.
Other researchers have presented a robotic platform for familiariz-
ing new patients with the process of controlling a powered prosthetic
arm [Dawson et al., 2012]. This myoelectric training tool (MTT) in-
cludes a table-top robotic arm (Figure 8), which a patient must learn
to control using signals from their remaining muscles.

3 This experiment is described with additional details in [Pilarski et al., 2012]

Figure 8. The myoelectric training tool (MTT), a multi-joint robotic pros-
thesis used to train new amputees.
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Figure 9. The user must perform a task, manually switching between four
degrees of freedom. The shaded blocks indicate when a joint is active (the
observed signal), and solid red lines indicate the system’s predictions after
less than 15min of online learning; intervals with no activity on any joint are
switching times. The grey vertical bars indicate the end of a joint activity and
thus the start of a switching period. The system learns to anticipate which
degree of freedom the user will move next. These choices will vary across
users and even within a task for a single user.
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The MTT enables four degrees of freedom, but the typical lack
of control sites on an amputee patient restricts the number of avail-
able control channels. As per standard commercial prostheses, con-
trol is therefore multiplexed, with one channel being used to switch
between joints in a cyclic order, and a second control channel select-
ing the currently active joint. However, a user can spend an unac-
ceptably large portion of their time selecting which joint they wish
to move next when using switching-based approaches of this nature,
as shown by the time periods with no joint activity in Figure 9.

We applied nexting predictions to examine if they can support user
switching in this setting. In these experiments, four predictions were
defined, one for the user-driven motion of each joint—the learn-
ing agent’s goal was to predict which joint the human user would
use next. These predictive questions represent temporally extended
expectations for motor activity on each of the MTT’s four joints.
For this task, the robot was operating with a duty cycle of 20ms,
and nexting questions were set to have a timescale of 2.5 seconds
(γ = 0.992). The feature vector used by the learning system was
generated by tiling together all four joint angles with each of the
other 28 sensors provided by the MTT system. The resulting feature
vector was sparse, consisting of 1,306,369 features, of which 169
were active at any given time.

Figure 9 shows the results of the nexting predictions after 15 min-
utes of online learning. The predictions often anticipate which joint
the user will move next, as shown by the fact that the joint that is se-
lected next often has the greatest magnitude of the four predictions.
This information could be used to change the joint selection order-
ing, so that instead of cycling through a fixed order, the system would
cycle through the joints in an order given by the nexting predictions.
Nexting-based joint selection of this kind was found to decrease the
number of switching commands that a user would have to provide,
and thus the total projected time used for transitions, as calculated
using the mean times observed for transitions involving one, two, or
three user switching actions (Figure 10). The projected transition cost
for the adaptive order was then compared to the cost for the best pos-
sible fixed switching order, as computed post-hoc from the recorded
data. Based on this comparison, it was found that nexting predic-
tions could facilitate a switching time decrease of more than 14%
on this task (Figure 10). Moreover, the time taken for switching was
found to rise monotonically with the number of switch commands.
This means that with adequate feedback to the user, this predictive
approach could reduce the amount of real time a patient spends on
tasks.

This approach to adapting the switching order demonstrates one
direct benefit of learning in situ. This is a scenario where, even
though a person is always in control of the actions being performed,
the robot can make the user’s life better by learning to anticipate what
the user will want next. As shown in these results, the best fixed or-
dering for the task is outperformed by an adaptive ordering. Given the
fact that a user will switch between several tasks and can solve the
same task in different ways, it is difficult to see how a non-adaptive
approach could achieve the same benefits. Moreover, in spite of the
relatively large number of variables and the large feature space, learn-
ing is still computationally and data efficient, as this level of perfor-
mance is reached in 15 minutes. All learning related computations
were completed within 5ms per iteration on the same laptop used in
the earlier experiment.

Transition with 1 switching actions, mean time: 1.09 sec
Transition with 2 switching actions, mean time: 1.75 sec
Transition with 3 switching actions, mean time: 2.21 sec
Net experiment time: 20.66 min
Net observed transition time: 10.40 min
Net transition time(projected for best fixed order): 9.98 min
Net transition time(projected for adaptive order): 8.49 min

Potential time savings with adaptive control: 1.49 min
Potential time savings on transitions: 14.3%
Potential time savings on full experiment: 7.2%

Figure 10. Additional performance numbers for the switching task, includ-
ing projected time savings from nexting predictions.

5 Related Work

Much previous work on reinforcement learning for real-time
robotics, has focused on its role in control. For example, the Natural
Actor-Critic algorithm [Peters and Schaal, 2008] has a critic that is
making a single prediction. Other reinforcement learning approaches
focus on policy evaluation without a predictive component, as used
for example in improving a quadruped walk [Kohl and Stone, 2004].
Previous work with reinforcement learning on robots has not demon-
strated learning of so many temporally-extended predictions in real-
time.

Related to the idea of learning many predictions in paral-
lel, is the idea of constructing optimal predictions for a set of
tests [Talvitie and Singh, 2011]. The domains differ greatly however,
as in that work the emphasis is on constructing the most accurate
predictive answers for partially observable systems that have a small
discrete set of observations, whereas this paper is concerned with sat-
isfying the constraints of learning in real-time with continuous data
on a robot.

The most similar work to the current system is an online variant
of an offline spectral method for making many temporally-extended
predictions [Boots et al., 2011]. Their work differs from the work
presented here in several important ways. Although their algorithm is
incremental and online, they do not demonstrate that it operates well
in real-time. Moreover, is not clear how readily their approach can
satisfy real-time constraints on an embedded system because their
algorithm uses computationally expensive matrix operations and so-
phisticated data transformations. Their algorithm requires a window
of past and future observations, which presents an additional mem-
ory requirement. Finally, their algorithm strongly couples the var-
ious prediction questions to discover joint structure, and coupling
the problems together in this way prevents direct parallel implemen-
tations. Despite these important distinctions in implementation be-
tween the two methods, it is possible that ideas from both methods
can be fruitfully combined because of their similar learning objec-
tives.

Despite the lack of directly comparable work, considerable pre-
vious work also examines the task of predicting the temporally
extended consequences of behaviour. However, the task has of-
ten been addressed with model-based roll-outs of a one timestep
dynamical model. This requires the acquisition of a one timestep
model of robot dynamics, either analytically or offline from
logs [Thrun and Mitchell, 1995], and then using this model for adapt-
ing control. Another line of work uses online, real-time learning with
a large memory of past experiences that are used to dynamically con-
struct local models [Atkeson et al., 1997]. However, that work does
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not develop the use of local models for temporally extended predic-
tions about many different targets. Moreover, their approach is com-
putationally intractable for systems that lack an underlying low di-
mensional description, such as a mobile robot with a diverse set of
sensing modalities.

Recent work on autonomous helicopter con-
trol [Abbeel et al., 2010] involves real-time control that balances
computational complexity with a cost-to-go function (a variant of
a value function) and simulations of the system dynamics at 20Hz
for a two-second horizon. Similarly, another approach used roll-outs
of a one timestep model to ensure that a robot with substantial
inertia can both move quickly and stop safely [Fox et al., 1997].
These approaches illustrate the computational expense of generating
temporally-extended predictions with one timestep models.

An important difference for robotics between reinforcement learn-
ing algorithms and the more common choice of Bayesian prediction
algorithms, lies in the use of a feature vector instead of generative
models of observation and state transition probabilities. In practice,
it is easier to provide features of the state than to construct a full
generative model for the dynamics of a sensor’s interaction with
the environment (such as accelerometers, or the behaviour of a per-
son guiding a robot arm). It is not uncommon for several aspects
of a robot’s eventual interaction with its environment to be poorly
understood by a designer. Robots are deliberately sent into novel
domains with complex dynamics including underwater exploration,
space, disasters, and human bodies. The control of these robots can
vary between full-autonomy to full-teleoperation, with more human
guidance when the situations are difficult to model a priori. Sys-
tem designers often have substantial knowledge gaps about the en-
vironments into which robots are deployed. If a robot had the ability
to safely acquire relevant knowledge from experience, this ability
would enable substantial flexibility for designers and end-users of
robots.

6 Broadening the Space of Questions (Ongoing and
Future Work)

We have demonstrated a method that learns to make thousands of
temporally extended predictions directly from robot experience in
real-time. The predictions are answering questions about the future
that are empirical and multi-scale, but are of a more constrained form
than can be answered by simulation rollouts with a one-timestep
model. In this section, we outline generalizations of our approach
that substantially broaden the space of predictions that can be ex-
pressed. The generalizations are based on the theory of options [Sut-
ton, Precup & Singh, 1999] and on allowing general value functions
to be option conditional [Sutton et al., 2011]. These extensions are
not meant to be novel—our contribution is scaling—but indicate how
our approach could be further generalized in future work.

The first generalization is to permit γ to vary with the state, γ =
γt, which enables questions with state based (pseudo)-termination
to be posed. For example the question “How many timesteps will
elapse until all the wheels stop turning?” can be posed by setting
rt = 1 and γt = 0 if the observed velocity of every wheel is
zero and γt = 1 otherwise. As another example, Figure 11 shows
an example of the amount of power consumed until a light sen-
sor is saturated or approximately two seconds have elapsed, where
γt = .95× ILight3<Saturation, and

rt = Σ3
i=1MotorCurrentit ×MotorVoltageit.

This prediction was learned with the same parameters and feature
representations used in our main result in Section III.

The next generalization is to add to the return an outcome zt at ter-
mination. This allows questions to be expressed where the final state
is relevant. For example, the robot’s expected temperature on Mo-
tor2 when the Light3 sensor is saturated can be expressed by setting
rt = 0, γt = .95 × ILight3<Saturation, zt = MotorTemperature2. In-
corporating zt into the return is supported by standard TD(λ). For all
the above generalizations of questions, the error in the learned pre-
dictions should decrease at rates comparable to those shown earlier.

A final generalization is to consider questions about different ways
of behaving. If the robot behaves according to one policy then it is
challenging to learn about the consequences of following a different
policy (referred to as learning off-policy). The standard TD(λ) algo-
rithm can diverge in this setting. The return can be expressed as

gr,z,γ,π(s) = E[Gr,z,γ,π
t |St = s, St+1 ∼ π(St)],

where
Gr,z,γ,π

t = rt+1 + . . . + rT + zT ,

and the termination time T is distributed according to γ. This
general question form is known as option-conditional predic-
tion [Sutton et al., 1999].
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Figure 11. TD(λ) can learn to answer questions where γ varies with time
for state based terminations and the addition of terminal outcomes. Here, we
see predictions matching returns for the question of how much power will be
used until the sensor Light3 is saturated, or spontaneous termination occurs
with a 2 second horizon.

To learn to answer questions in real-time off-policy, one can use
the GTD(λ) algorithm [Maei, 2011] whose update equations are
shown below.

δt = rt+1 + (1− γt+1)zt+1 + γt+1θ
>
t xt+1 − θ>t xt

ρt = π(At|St)
πb(At|St)

et = ρt(xt + γtλtet−1)

θt+1 = θt + α(δtet − γt+1(1− λt+1)(e
>
t wt)xt+1)

wt+1 = wt + β(δtet − (x>t wt)xt)

The primary computational differences between GTD(λ) and TD(λ)
are an additional weight vector w, an associated step-size parameter
β, and an explicit computation of the ratio ρ between πb (the robot’s
behaviour policy) and π (the policy considered by the prediction).

This algorithm is a gradient-based generalization of the traditional
TD(λ) algorithm. The algorithm learns an answer to the question g
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specified by r,z,π, and γ as a linear function of the feature vector,
with the same form of linear prediction, ĝ(xt) = θ>t xt, and thus the
same linear complexity. The GTD(λ) algorithm maintains guarantees
of stability when learning off-policy and converges to a fixed-point
that minimizes the mean-squared projected Bellman error weighted
by the distribution of states visited by the behaviour [Maei, 2011].
This somewhat technical objective is in some sense a natural one for
online learning, as the algorithm minimizes the error that arises from
the agent’s limited perception (projecting environmental state onto
the feature vector x), for the Bellman error (the difference between
prediction and reality across adjacent timesteps), for the experience
generated by the robot’s behaviour that is relevant to the policy con-
sidered by the prediction.

An example of an off-policy scenario would be to learn, from the
sensory experience of a car being driven by a person, to predict the
time to come to a complete stop while braking. Many environmen-
tal aspects could influence stopping times while braking, including
gravel roads, temperature, and rain. The ability to learn off-policy
enables learning from all the snippets of experience when the driver
touches the brakes, and not just the times when the car comes to a
complete stop.

The space of questions that can be expressed in this final setting
is quite general, and possibly covers all the interesting temporally-
extended predictions that one can answer with one-step mod-
els [Sutton et al., 2011]. However, there remain numerous compli-
cations introduced by the general setting that make it unsuitable for
the demonstration of scaling that is the focus of the present work. In
particular, it is difficult to directly measure performance in an off-
policy setting. In an off-policy setting, predictions are made about
many different ways of behaving, but from each state only the pre-
dictions for one way of behaving can be tested at a time. Moreover,
the tests alter the state and the state distribution from which experi-
ence is gathered. All these issues can probably be managed, but at
the cost of significantly greater complexity, which would make the
demonstration of scaling less compelling. Nevertheless, we plan to
explore this direction in future work.

7 Conclusions

We have presented a demonstration that a robot can learn to answer
temporally-extended predictive questions in real-time at scale: for
thousands of questions, using thousands of features, with amounts
of experience and computation that are commonly available on
robots today. This approach provides a principled technique for a
robot to acquire knowledge from experience in real-time about the
temporally-extended consequences of its behaviour. We have de-
scribed one potential use for this style of information as part of an
adaptive user interface for a robot arm. The method is straightforward
to deploy on different robots, and several directions are promising for
further study.
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Continuous Adaptation of Robot Behaviour through
Online Evolution and Neuromodulated Learning

Fernando Silva1 and Paulo Urbano1 and Anders Lyhne Christensen2

Abstract. We propose and evaluate a novel approach to the on-
line synthesis of neural controllers for groups and swarms of au-
tonomous robots. We combine online evolution of weights and net-
work topology with neuromodulated learning in a completely de-
centralised manner. We demonstrate our method through a series of
simulation-based experiments in which a group of e-puck-like robots
must perform a dynamic concurrent foraging task. In this task, scat-
tered food items periodically change their nutritive value or become
poisonous. Our results show that when neuromodulated learning is
employed, neural controllers are synthesised faster than by evolution
alone. We demonstrate that the online evolutionary process is capable
of generating controllers well adapted to the periodic task changes.
We evaluate the performance both in a single robot setup and in a
multirobot setup. An analysis of the evolved networks shows that
they are characterised by specialised modulatory neurons that exclu-
sively regulate online learning in the output neurons.

1 INTRODUCTION

Evolutionary computation techniques have been widely studied and
applied in the field of robotics as a means to automate the design of
robotic systems [5]. In evolutionary robotics (ER), robot controllers
are typically based on artificial neural networks (ANN). The connec-
tion weights and sometimes the topology of the ANN are optimised
by an evolutionary algorithm (EA), a process termed as neuroevolu-
tion. Evolutionary synthesis of controllers is usually performed of-
fline in simulation, which presents a number of limitations. When a
suitable neurocontroller is found, it is deployed on real robots. Since
no evolution or adaptation takes place online, the controllers are fixed
solutions that remain static throughout the robot’s lifetime. If envi-
ronmental conditions or task parameters become distinct from those
encountered during offline evolution, the evolved controllers may be
incapable of solving the task as they have no means to adapt.

Online evolution is a process of continuous adaptation that poten-
tially gives robots the capacity to respond to changes in the task or
in environmental conditions by modifying their behaviour. An EA is
executed on the robots themselves as they perform their tasks. This
way, robots are capable of long-term self-adaptation. In recent years,
different approaches to online evolution have been proposed (see for
instance [7, 20, 35, 36, 37, 38]). Notwithstanding, in such contribu-
tions, online neuroevolution has been limited to evolving weights in
fixed-topology artificial neural networks. In a recent study [22], we
proposed a novel approach called odNEAT, an online, distributed and

1 LabMAg, Faculdade de Ciências, Universidade de Lisboa (FC-UL), Lisbon,
Portugal, email: {fsilva,pub}@di.fc.ul.pt

2 Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-
IUL), Lisbon, Portugal, email: anders.christensen@iscte.pt

decentralised version of NeuroEvolution of Augmenting Topologies
(NEAT) [32]. NEAT is a state-of-the-art neuroevolution method that
evolves the weights and the topology of an ANN. odNEAT shares
some features with rtNEAT, a real-time version of NEAT designed
for video games [30]. In rtNEAT, game characters are able to evolve
online while they are playing against humans. Both NEAT and rt-
NEAT operate with access to global and centralised information.
odNEAT, on the other hand, is completely distributed across mul-
tiple robots which have to solve the same task, either individually or
collectively. odNEAT implements the online evolutionary process ac-
cording to a physically distributed island model. Each robot acts like
an island with genetic information being exchanged through intra-
island variation (i.e., within a population encapsulated in one robot)
and inter-island migration (between two or more robots).

By evolving neural topologies, odNEAT bypasses inherent limita-
tions of fixed-topology online neuroevolution algorithms, in which
the network topology has to be chosen a priori. Fixed-topology
methods require a human to decide a suitable topology for a given
problem, which usually involves intensive experimentation. Choos-
ing an inappropriate topology affects the evolutionary process and,
consequently, the potential for adaptation because: (i) Networks too
large have extra weights, and each of these adds an extra dimension
to the search space, and (ii) networks too small may be unable to
represent solutions beyond a certain level of complexity, which po-
tentially limits their performance. In odNEAT, on the other hand, a
suitable network topology is the product of a continuous evolutionary
process.

Online evolution is a form of online adaptation that acts at geno-
type level. Controllers produced are static as they do not change
their parameters while they are controlling the robot. Whereas evo-
lution produces phylogenetic adaptation, online learning operates on
a much shorter time-scale. Online learning acts at phenotypic level
and gives each individual controller the capacity to self-adjust during
task-execution. Several studies indicate that learning can accelerate
the evolution of good solutions, a phenomenon known as the Bald-
win effect [9].

Agents controlled by ANNs can learn from experience by dynam-
ically changing their internal synaptic strengths. This mechanism is
inspired by how organisms in nature adapt to cope with dynamic and
unstructured environments as a result of synaptic plasticity [18]. In
this paper, we synthesise behavioural control for autonomous robots
based on online evolution and online learning. In other words, we
execute online both phylogenetic adaptation, associated with the de-
velopment of the species, and ontogenetic adaptation which is as-
sociated with the learning processes in the individual.3 We combine
evolution of weights and network topology (odNEAT) with learning

3 These terms are in accordance with those used in [3].
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through neuromodulation [26]. In biological organisms, neuromodu-
lation is a form of synaptic modification involving modulatory neu-
rons that diffuse chemicals at target synapses. Modulation has been
suggested as essential for stabilising classical Hebbian plasticity and
memory [2]. The combination of online evolution and neuromodu-
lated learning allows the evolutionary process to explore two distinct
kinds of plasticity4: structural plasticity is the generation of new con-
nections and neurons, which in turn redefines the network topology;
synaptic plasticity changes the strength of existing connections in a
given topology.

We demonstrate our method in a simulated experiment where a
group of e-puck-like robots [15] must perform a dynamic concur-
rent foraging task. Robots must locate and consume scattered food
items. When a food item is consumed, a new item of the same type
is randomly placed in the environment. At regular time intervals,
food items change their nutritive value, or become poisonous. Be-
sides learning to forage, robots must therefore be able to adapt and
change their foraging policy in order to survive. To the best of our
knowledge, the contribution presented here is novel in two aspects:
(i) an online, distributed, and decentralised version of NEAT has not
been studied prior to odNEAT, and (ii) this is the first demonstra-
tion of combined online evolution of both the weights and the ANN
topology, and learning processes in multirobot systems.

2 BACKGROUND AND RELATED WORK

In this section, we first present the main features of NEAT, rtNEAT
and odNEAT, and we then establish the relationship between these
three neuroevolutionary methods. Finally, we discuss evolution of
plastic ANNs, with a focus on the neuromodulation-based model.

2.1 NeuroEvolution of Augmenting Topologies

The NEAT method [32] is one of the most prominent neuroevolu-
tion (NE) algorithms. The method is capable of optimising both the
topology of the network and its connection weights. NEAT relies
on global and centralised information like canonical GAs. NEAT
has been successfully applied to highly complex problems, such as
double pole balancing, and has outperformed several methods that
use fixed topologies [29]. The high performance of the algorithm is
due to three key features: tracking genes with historical markers to
allow meaningful crossover between topologies, a niching scheme,
and evolving topologies incrementally from simple initial structures
(complexification).

The network connectivity is represented through a flexible genetic
encoding. Each genome is a list of connection genes, each of these
referring to the two node genes connected. Furthermore, a connec-
tion gene encompasses the weight of the connection, a bit indicat-
ing if the connection gene is genetically expressed and a global in-
novation number (IN), unique for each gene in the population. INs
represent a chronology of the genes introduced. With this feature,
the difficulty of matching different network topologies (an NP-hard
problem) is avoided and crossover can be performed without a priori
topological analysis. During crossover, genes with the same histori-
cal markings are aligned to produce meaningful offspring. In terms
of mutations, NEAT allows for common connection weights pertur-
bations and structural changes that may lead to the insertion of: (i) a
connection gene between two previously unconnected nodes, or (ii) a
node gene, splitting an old connection into two new connections and

4 These terms are in accordance with those defined in [17].

disabling the former. Each new gene inserted receives an innova-
tion number. This way, genomes representing networks of different
topologies remain compatible throughout evolution because their ori-
gin is known.

The niching scheme is composed of two building blocks: specia-
tion and fitness sharing. Speciation divides the population into non-
overlapping sets of similar individuals based on a topological simi-
larity measure. This mechanism protects new structural innovations
by reducing competition between individuals representing differing
structures and network complexities. In this way, newer structures
have time to mature. If a species does not improve for a certain num-
ber of generations, it is removed from the population. Explicit fitness
sharing dictates that individuals in the same species share the fitness
of their niche. The fitness scores of existing members of a species
are first adjusted, i.e., divided by the number of individuals in the
species. Species then grow or shrink depending on whether their av-
erage adjusted fitness is above or below the population average.

The third reason why NEAT often outperforms other NE ap-
proaches is the incremental exploration of the search space. The al-
gorithm starts with a uniform population of simple networks with no
hidden nodes as in SAGA [8]. Complexity is introduced incremen-
tally as a result of structural mutations. Since only structural muta-
tions that have proven to be fit survive, the exploration of the search
space is conducted in an incremental manner.

With the purpose of evolving increasingly complex ANNs online,
rtNEAT was introduced [30]. Essentially, rtNEAT is a centralised
real-time version of NEAT. rtNEAT contains some differentiating
characteristics. While NEAT replaces the entire population at each
generation, in rtNEAT one offspring is produced at regular intervals,
every n time steps. The worst individual is removed and replaced
with a child of a parent chosen among the best. Unlike NEAT, rt-
NEAT attempts to keep the number of species constant by adjusting
a threshold Ct, which determines the topological compatibility of an
individual with a species. When there are too many species, Ct is in-
creased to make species more inclusive; when there are too few, Ct

is decreased to be stricter. rtNEAT has shown to preserve the dynam-
ics of NEAT, namely protection of innovation through speciation and
complexification [29].

2.2 odNEAT: An online, distributed, and
decentralised evolutionary algorithm

odNEAT runs across a distributed group of agents whose objective is
to evolve and adapt while operating in the environment. Each agent
is controlled by an artificial neural network that represents a candi-
date solution to a given task. Agents maintain a virtual energy level
reflecting their individual task performance. The fitness value is de-
fined as the average of the energy level, sampled at regular time in-
tervals.

In odNEAT, each agent maintains a local set of chromosomes in
an internal repository. The repository is a genetic pool that stores a
limited number of chromosomes and their respective fitnesses. The
stored chromosomes are arranged into species based on the nich-
ing scheme of NEAT. The set of chromosomes include the agent’s
current and previous active chromosomes and those received from
other agents. Each agent probabilistically broadcasts its active chro-
mosome to agents in its immediate neighbourhood, an inter-agent
reproductive event, with a probability computed as follows:

P (event) =
F̄k

F̄total

(1)
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where F̄k is the average adjusted fitness of local species k to which
the chromosome belongs and F̄total is the sum of all local species’
average adjusted fitnesses. Due to the broadcast of genetic informa-
tion, the active chromosome of an agent may be present in another
agent’s repository. Such migrations approximate in a distributed
manner and over time the reproduction dynamics of rtNEAT. This
way, each repository is a local mirror of what happens in the popula-
tion at large, but no agent has a complete global view of the system.

Besides the internal repository, each agent also maintains a local
tabu list, a short-term memory which keeps track of recent poor solu-
tions: chromosomes removed from the repository or that caused the
robot to run out of energy. Newly received chromosomes must first
be accepted by tabu list. The acceptance condition is only met if the
received chromosomes are topologically dissimilar from all chromo-
somes in the tabu list. After the pre-evaluation by the tabu list and if
the acceptance condition was met, a received chromosome becomes
part of the repository if it has a fitness score higher than the worst
local chromosome. Due to the fixed size of the repository, whenever
it is full, the insertion of a new chromosome is accompanied by the
pre-requisite of removing the chromosome with the worst adjusted
fitness. When a new chromosome is removed or added, the corre-
sponding species has one less or one more element and therefore
the adjusted fitness F̄ is recalculated. Whenever an agent receives
a copy C’ of a chromosome C already contained in the repository
(structurally the repository does not allow copies of the same chro-
mosome), the energy level of C’ is used to incrementally average the
fitness of the C and provide a more reliable estimate of the chromo-
some’s true fitness.

A particular characteristic of NEAT is the chronology of the genes
due global to innovation numbers, which are assigned sequentially.
In order to allow a decentralised implementation, odNEAT uses lo-
cal high-resolution timestamps instead of innovation numbers. Each
agent is responsible for assigning a timestamp to each local innova-
tion, be it a connection or a node. Using high-resolution timestamps
for labels practically guarantees uniqueness and allows odNEAT to
retain NEAT’s concept of chronology.

When an agent’s energy reaches zero (because it is incapable of
accomplishing the task), a new active chromosome is created. In this
process — an intra-agent reproductive event — a parent species is
chosen with probability proportional to its average fitness, as defined
in Equation 1. Then, two parents are selected from the species, each
one via a tournament selection of size 2. Offspring is created based
on NEAT’s genetic operators: crossover of the parents’ genomes and
mutation of the new chromosome.

Newly created chromosomes are given a certain amount of time α
during which they control the agent, a maturation period. The mat-
uration period gives the new chromosomes a change to spread their
genome by mating with other agents. In Algorithm 1, we summarise
odNEAT as executed independently by each agent.

2.3 Artificial evolution of neuromodulated
plasticity

Synaptic plasticity is considered a fundamental mechanism behind
memory and learning in biological organisms [11]. In ANNs, the
modification of internal synaptic connection strengths can be per-
formed according to a generalised Hebbian plasticity rule [18].
Synaptic weights are updated based on pre- and post-synaptic neuron
activities as follows:

∆w = η · [Axy +Bx+ Cy +D] (2)

Algorithm 1 Pseudo-code of odNEAT that runs independently on
every agent (see text).
initialise genes()
energy ← default energy
loop

if broadcast? then
send(all genes, agents in range)

end if
if has received? then

for all element in received do
if tabu and repository accept(element) then

add to repository(element)
adjust repository size()
adjust species fitness()

end if
end for

end if
act in environment()
energy ← update energy level()
if energy ≤ 0 && not(in maturation period?) then

add to tabu list(old controller)
generate offspring()
assign as controller(offspring)

end if
end loop

where η is the learning rate, x and y are the activation levels of the
pre-synaptic and post-synaptic neurons. w is the connection weight
and A −D are respectively the correlation term, pre-synaptic term,
post-synaptic term, and constant weight decay or increase. By tuning
these parameters, it is possible to evolve distinct forms of synaptic
plasticity. ANN controllers can thus implement learning and memory
by means of recurrent connections, plastic Hebbian connections, or
a combination of the two.

The adaptation capabilities of fixed-topology plastic Hebbian
ANNs were demonstrated in [34]. In a light-switching task, a mo-
bile robot Khepera had to turn on a light switch and then navigate
towards a gray area at the opposite end of the environment. The
evolved plastic Hebbian controllers managed to solve the task much
faster than fixed-weight networks. The plastic controllers also exhib-
ited a larger variety of successful behaviours and robustness to envi-
ronmental changes. With a similar setup, it was shown that dynamic
environments promote the genetic expression of plastic connections
over static ones [6]. Plastic ANNs have also been successfully used in
a variation of the classic foraging task denominated as the dangerous
foraging domain [31].

Although the use of plastic ANNs can increase performance, re-
cent studies indicate that in more complex tasks, both plastic and
fixed-weight ANNs have limited learning capabilities [18, 26, 31].
In this context, controlling synaptic plasticity through neuromodu-
lation was presented as a more powerful and biologically plausible
approach [11]. In a neuromodulated network, specialised modulatory
neurons control the amount of activity-dependent plasticity between
pairs of standard control neurons. Therefore, control of plasticity is
separated from the signal processing. This process is illustrated in
Fig. 1.

Neuromodulation has been successfully applied to various do-
mains. In [26], the authors presented results corroborating the
favourable effects of neuromodulation when evolving adaptive
ANNs for navigation and reward-collecting in both single and dou-
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Figure 1. Neuromodulated plasticity. A modulatory neuron, Mod 0,
transmits a modulatory signal to Std 3. Modulation affects the learning rate
for synaptic plasticity of weights w1,3 and w2,3. The weights are part of the

incoming connections for the standard control neuron being modulated.

ble T-maze. The experiments conducted demonstrated that, in some
situations, the use of neuromodulation enables the evolution of high-
performing neural controllers, whereas plain Hebbian plasticity does
not. This result is similar to those presented, for instance, in [12, 23].
In [27], it was shown that neuromodulation allows the evolution of
behaviours with a complex reinforcement learning dynamic. In a
simulated foraging experiment, a simulated bee had to collect nectar
on a field with two types of flowers. With the amount of nectar asso-
ciated to each of the flowers changed stochastically, the bee evolved a
value-based learning strategy which was found to perform efficiently
in environments not seen during evolution. In [25], results obtained
suggest that neuromodulation does not only allow for better learning,
but also reduces the computation time in decision processes.

The main advantage of adding neuromodulation is that ANNs be-
come capable of changing the degree of synaptic plasticity on spe-
cific neurons at specific times, i.e., deciding when learning should
start and stop. In addition to its standard activation value ai, each
neuron i also computes its modulatory activation mi as follows:

ai =
∑
j∈Std

wji · oj (3)

mi =
∑

j∈Mod

wji · oj (4)

where wji is the connection weight between pre- and post-synaptic
neurons j and i. oj is the output of a pre-synaptic neuron j. The
weight between neurons j and i, with j ∈ Std, undergoes synaptic
modification as follows:

∆wji = tanh(mi/2) · η · [Aojoi +Boj + Coi +D] (5)

2.4 Online evolution and learning
The current practice when combining evolution and individual learn-
ing mechanisms such as Hebbian plasticity or neuromodulation is to
conduct evolution offline and learning online. Evolution is performed
in a discrete and centralised manner. An external component creates
an initial population and is responsible for selecting, mutating and
replacing individuals. The evaluation process is based on repeated
trials of experiments. For instance, in the T-maze experiments [26],
an agent had to navigate through the maze, collect one reward and
eventually return home. After that, a new trial started and the agent
was tested for the ability to perform the same type of action. In the
dangerous foraging domain [31], each trial contained only a specific
type of food, either nutritious or poisonous. The ANN-controlled

agent was evaluated by its ability to consume nutritious items, and
stop consuming after trying a poisonous item. The robot did thus not
have to explore to survive. One intuitive strategy would be to con-
sume one poisonous item and then simply stop moving until the end
of the trial. In a continuous evolutionary process, this kind of strate-
gies is condemned to fail. In our domain, if a robot stops foraging
after consuming a poisonous item, it will inevitably die. This way,
online evolution presents a higher degree of difficulty as robots are
evaluated continuously by their ability to perform the task.

In our proposed method, as previously mentioned, both evolution
(of weights and topology) and learning are performed online. In or-
der to encode neuromodulated plasticity, odNEAT’s genetic encod-
ing was augmented with a new modulatory neuron type. Each time
a new neuron is added through structural mutation, it is randomly
assigned either a standard or modulatory role. We augmented the ge-
netic encoding with the learning parameters in Eq. 5. The five param-
eters are separately encoded and evolved in the range [-1,1] for A-D,
and [-100,100] for η. It is important to note that there is no Lamarck-
ian inheritance. Modifications in connection weights that occur as a
result of neuromodulated learning are not passed on to offspring nor
are part of the broadcasted chromosomes.

3 EXPERIMENTAL SETUP
This section describes the evaluation domain of our method, the robot
model and the ANN’s initial topology, and the common parameters
across all experiments.

3.1 The concurrent foraging domain
The food foraging environment is a classical scenario to test adap-
tation and learning. The concurrent foraging task used in this study,
a variation of the classical foraging, is performed in an environment
with different types of items that can be consumed. The environment
is a 3 x 3 meter square arena surrounded by blue walls. Each robot
loses energy at a constant rate of 0.1 units/sec and therefore must
learn to explore efficiently. The virtual energy level is limited to the
range [0,100] energy units. This way, each robot is capable of surviv-
ing for approximately 17 minutes without consuming any (nutritious)
food. There are two types of items, red items and pink items. Items
of the same colour always have the same nutritive value, but at regu-
lar time intervals, the nutritious food items become poisonous or less
nutritive and vice-versa. Robots able to sense the colour of nearby
items but cannot determine the nutritive value of an item without
consuming it. When an item is consumed, a new item of the same
type is placed randomly in the arena. This way, the task remains dy-
namic while the sum of the energy value of the food items in the
environment is kept constant.

In our experimental setup, the nutritive value of the different types
of food changes periodically. Periods are composed of four phases of
equal duration. At the beginning of each phase, the energy value of
the different types of food items is set as listed in Table 1.

Table 1. The energy value of red and pink food items during the four
phases. Values listed are in energy units.

Phase 1 Phase 2 Phase 3 Phase 4
Red item 5 8 -3 3
Pink item 3 -3 8 5

To assess how robots adapt through time and what is the impact
of neuromodulated learning on the task performance, we applied
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odNEAT with and without neuromodulation. For each configuration,
we performed three sets of evolutionary experiments characterised
by distinct phase durations pd: (i) pd = 9 min, (ii) pd = 90 min, and
(iii) pd = 900 min.

The motivation for the concurrent foraging task is twofold:
(i) since robots lose energy at a constant rate, they are required to
evolve efficient exploration behaviours, (ii) when the nutritive values
of the two types of food items change, the robots must be able to
change their food gathering policy in order to survive.

3.2 Robot model and behavioural control
The simulated robots are modelled after the e-puck, a small (75 mm
in diameter) differential drive robot capable of moving at speeds
of up to 13 cm/s [15]. We have equipped each robot with an
omni-directional camera similar to the one employed by the s-bot
robots [1]. The image recorded is processed to calculate the distance,
the red colour component, and the blue colour component of the clos-
est object in each of the eight 45◦ sectors. The camera has a range of
50 cm and is subject to noise (simulated by adding a random Gaus-
sian component within ± 5% of each of the three components’ satu-
ration value). Besides the camera, each robot has an internal energy
level, comfort, and discomfort sensors. The energy sensor allows a
robot to perceive its virtual energy level. The comfort and discomfort
sensors indicate if the robot has consumed a poisonous or a nutritious
food item, respectively. Note that the two sensors do not indicate how
nutritious or poisonous a consumed food item is. That information is
indirectly reflected by a new energy sensor reading, and the robot has
to learn how to adapt its behaviour accordingly.

Each of the robots is controlled by an ANN synthesised by
odNEAT. The ANN’s connection weights ∈ [−10, 10]. The input
layer consists of 27 neurons: (i) three for each 45◦ sector, measur-
ing the red and blue colour components, and distance of the closest
object, (ii) one neuron for each of the virtual sensors (energy, dis-
comfort, and comfort). The output layer contains three neurons, one
for each wheel of the robot, and one for the gripper. The gripper en-
ables a robot to consume the closest food item within a range of 2 cm
(if any).

3.3 Experimental parameters
When the energy level reaches zero, a new controller is generated
and assigned maximum energy (100 units). In the generation of the
new controller, two parents are selected from the local repository.
Crossover and mutation are performed with probabilities 0.25 and
0.4, respectively. During mutation, the probability of adding a new
neuron is 0.1 while a new connection is added with probability 0.05.
Each connection weight is perturbed with probability 0.02 and a
maximum magnitude of 2.5. Active chromosomes can be commu-
nicated up to a range of 1 meter and the local repository is capable
of storing 30 chromosomes. Performance was found to be robust to
moderate changes in these parameters.

4 RESULTS AND DISCUSSION
Two main experimental setups were conducted: (i) single robot setup,
and (ii) multirobot setup. In the single robot setup, we evaluate the
effects of neuromodulated learning when task-requirements change
at different time-scales as in [21]. We also analyse the structural role
of neuromodulation, i.e., how modulatory neurons are integrated in
the ANN topology. In the multirobot setup, we apply with odNEAT

with neuromodulation to robot groups of different sizes. We evaluate
the impact of the group size on performance.

4.1 Effects of neuromodulated learning
To assess the impact of neuromodulated learning on the robots’
task performance, we performed three sets of evolutionary experi-
ments characterised by distinct phase durations pd: (i) pd = 9 min,
(ii) pd = 90 min, and (iii) pd = 900 min. In order to avoid compe-
tition for food resources and interferences caused by the behaviour
of other robots, only one robot was present in the environment in
the first set of experiments. For each configuration, we placed five
food items of each type and performed 30 independent runs. We con-
sider those controllers stable that manage to survive at least 25 times
the minimum survival time, i.e., approximately 7 hours of simulated
time.

The results obtained are listed in Table 2. The average number of
evaluations, i.e., the number of controllers tested by the robot to pro-
duce stable solutions, is illustrated in Fig. 2. odNEAT combined with
neuromodulation required between 23.3% and 28.2% fewer evalua-
tions than odNEAT without neuromodulation. For pd = 9 min and
pd = 90 min, differences in the number of evaluations are not statis-
tically significant (ρ > 0.20 and ρ > 0.15 respectively, Student’s
t-test). For pd = 900 min, the differences are statistically significant
(ρ < 0.01). These results suggest that, as the task-requirements be-
come more stable, so does the performance of odNEAT with neuro-
modulation.

odNEAT alone failed to achieve stability in two evolutionary runs,
one for pd = 9 min and one for pd = 90 min. In these runs, the longest
surviving controllers were executing when the experiment as termi-
nated after 100 hours of simulated time. At that point, the respective
controllers had survived for 4.04 hours and 6.69 hours. In terms of
gathered energy per period, the performance of the solutions is sim-
ilar. Controllers with neuromodulation perform slightly better than
solutions without neuromodulation. The most intriguing aspect is the
fact all evolved solutions, whether modulated or not, present a similar
performance. Evolution alone is thus capable of generating adequate
solutions to the task.

Table 2. Summary of the results obtained for each of the three phase
durations tested. The table lists the average number of evaluations required

before stable solutions are evolved, and the average maximum age and
gathered energy per period in each experimental setup.

Experimental setup with odNEAT
Phase dur. Evals. Max Age (mins) Gathered Energy

9 mins 39.02 3404.98 ± 1668.31 343.43 ± 35.38
90 mins 49.28 2886.88 ± 1399.20 3491.03 ± 334.49

900 mins 40.40 3041.81 ± 1446.78 42526.94 ± 6897.61
Experimental setup with neuromodulated odNEAT
Phase dur. Evals. Max Age (mins) Gathered Energy

9 min 29.52 3351.12 ± 1358.34 354.39 ± 46.19
90 min 37.79 2799.34 ± 1650.21 3530.82 ± 336.66
900 min 28.99 3074.33 ± 1283.85 45199.64 ± 6680.48

Neuromodulation allows a significant speed-up in adaptation time,
which is important when adaptation is completely online. The re-
sults suggest an interplay between online evolution and learning. The
idea that learning helps evolution by reducing the adaptation time is
not new. There is much evidence that: (i) both processes are inte-
gral to the success of evolution in both biological and artificial sys-
tems [14, 19], and (ii) that learning can accelerate the evolution of
good solutions [9], which is known as the Baldwin effect. As for
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Figure 2. The average evaluations that each evolutionary method requires
in order to produce stable controllers, within distinct phase durations. On

average, odNEAT combined with neuromodulation required between 23.3%
and 28.2% fewer evaluations than odNEAT without neuromodulation.

what neuromodulation concerns, our results further indicate that the
additional complexity required to include modulatory neurons, and
the corresponding increase in the search space, is compensated for
by the learning ability and dynamics of modulated networks.

Depending on the experimental setup, the most stable controller
of each run operated from approximately 47 hours to 57 hours of
simulated time before the experiment was terminated. Figure 3 ex-
emplifies the adaptation process that produces stable controllers for
the two best runs of odNEAT with neuromodulation and pd = 9 mins.
Stable solutions are produced in less than 6 hours and operate until
the end of the experiment (100 hours). These results indicate that the
evolutionary process is capable of evolving controllers well adapted
to the periodic changes in the nutritive value of the food items. The
foraging behaviours of the two controllers are different from one an-
other. While the controller synthesised in run 10 is greedy and there-
fore consumes more food items (including poisonous), the other con-
troller exhibits the opposite strategy and restricts food consumption
actions.

Table 3. Summary of the number of nodes and connections added to the
initial network topology by each evolutionary method. NM stands for
neuromodulation. Results for each configuration are averages over 30

independent evolutionary runs.

Evol. Method Phase Dur. Connections added Neurons added
odNEAT 9 mins 26.43 ± 12.30 9.47 ± 3.95
odNEAT 90 mins 30.26 ± 17.32 10.41 ± 4.65
odNEAT 900 mins 25.17 ± 12.82 9.60 ± 4.31

odNEAT + NM 9 mins 22.89 ± 14.98 8.48 ± 4.83
odNEAT + NM 90 mins 29.32 ± 11.31 10.82 ± 3.91
odNEAT + NM 900 mins 28.91 ± 11.57 10.50 ± 3.57

ANNs evolved with and without neuromodulation have a simi-
lar topological complexity. The initial topology of stable solutions
was augmented with a comparable number of connections and neu-
rons (see Table 3). Topologies of similar complexity are synthesised
faster by odNEAT with neuromodulation. This result suggests that
when neuromodulation is used, odNEAT performs a more efficient
exploitation of a given network topology. In fixed-weight networks,
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Figure 3. The best two runs for odNEAT with neuromodulation in the
setup pd = 9 mins. In both cases, stable controllers are produced in

approximately 350 mins, an equivalent to 5.83 hours, and operate until the
end of the respective experiment (6000 mins, 100 hours).

fine-grain adjustment of connection weights can only be achieved
through mutation. Modulated networks allow for a different expres-
sion of a given topology’s potential and are advantageous even when
task requirements do not change for long periods (pd= 900 mins).
When modulatory neurons are present, solutions are synthesised af-
ter fewer controller evaluations, probably due to the modification of
internal dynamics by each network.

4.2 Structural role of neuromodulation

The results presented above show that neuromodulated learning al-
lows for faster synthesis of stable controllers. In this section, we anal-
yse the structural role of neuromodulation on the most stable con-
trollers of each independent run in order to determine how it affects
internal neural dynamics.

Table 4. Summary of the most stable controllers in each independent run.
The table lists the number of neurons and connections added to each

network, and how many of these have a modulatory role.

Phase Duration
9 mins 90 mins 900 mins

Neurons added 9.73 ± 4.88 11.97 ± 4.02 10.10 ± 5.07
Mod. Neurons 4.97 ± 2.92 6.07 ± 2.99 5.03 ± 3.36
Conns. added 23.93 ± 13.28 30.57 ± 10.58 25.67 ± 13.34
Mod. Conns. 6.37 ± 4.39 7.93 ± 4.34 6.97 ± 4.90

Table 4 shows the average complexity of each stable solution. Ap-
proximately half of the neurons added through structural mutation
have a modulatory role. Modulatory actions are localised as each of
these neurons typically connects to only one or two other neurons.
A common topological characteristic between evolved solutions is
that the majority of modulatory connections have output neurons as
targets. Both topological aspects, the low density of connections per
modulatory neuron and the fact that output neurons are the main tar-
get of modulation, have also been verified in distinct tasks and exper-
iments [24]. This topological aspect is the main difference between
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solutions evolved with and without modulation, and what accounts
for faster synthesis of sustainable ANNs.

Further analysis of neural topologies indicates that the evolution-
ary process often leads to the appearance of modulatory neurons that
exclusively regulate output neurons. We define these units as spe-
cialised modulatory neurons due to the fact they only regulate the
output actions. The percentage of specialised neurons from the total
of modulatory neurons added is listed in Table 5. Depending on the
experimental setup, 59% to 69% of the modulatory neurons inserted
are specialised units. 6% to 9% of the specialised neurons modulate
at least two output neurons. This way, specialised neurons are capa-
ble of simultaneous regulating, for instance, the left and right wheels
and/or the gripper.

Table 5. Summary of the specialised neurons (modulatory neurons that
only modulate the output neurons) for the best solutions of each evolutionary
run. The table lists the percentage of modulatory neurons that are specialised
in regulating the output neurons, and the percentage of specialised neurons
that regulate each of the three outputs. LW and RW represent the left and

right wheel, respectively. Gr represents the gripper.

Phase Dur. Spec. Neurons (%) LW (%) RW (%) Gr (%)
9 mins 69 ± 20 34 34 38

90 mins 62 ± 24 40 32 35
900 mins 57 ± 26 50 30 29

For pd = 9 and pd = 900 mins, differences in the number of spe-
cialised neurons are statistically significant (ρ < 0.05, Student’s t-
test). Analysis of experimental data shows that there is a higher reg-
ulatory activity of outputs for the setups of pd = 9 mins and pd = 90
mins, than for pd = 900 mins. In these scenarios, controllers experi-
ence more environmental changes during task-execution. Food gath-
ering policies must be flexible and change whenever a nutritious item
becomes less nutritive or poisonous. With the increase of the duration
of each phase, the task becomes less dynamic and the percentage of
specialised neurons decreases. Existing specialised neurons increas-
ingly focuses on movement (left and right wheels) and less on the
gripping and food consumption actions.

Figure 4. Evolved foraging behaviour for pd = 9 mins. Nutritious food
items, marked with ’N’, are consumed by moving closely around it hence the

small circular movements. Poisonous food items, marked with ’P’, are
avoided by performing wider circular trajectories.

In behavioural terms, foraging strategies evolved are quite distinct.

Figure 4 shows one of the evolved behaviours by odNEAT with neu-
romodulation for pd = 9 mins. In the presented environmental stage,
there are both poisonous and nutritious food items. When a nutritious
food item is detected, the robot moves closer to the item and con-
sumes it (small circular movements). When a poisonous food item
is detected, the robot moves in a wider circular trajectory and avoids
the item.

4.3 Scalability experiments
odNEAT in a completely distributed evolutionary algorithm for on-
line adaptation in groups of embodied agents such as robots. The EA
is distributed across multiple robots which have to solve the same
task, either individually or collectively. In odNEAT, each robot tries
to evolve a solution to solve the same task, either individually or col-
lectively. Exploration of the search space is therefore performed in
parallel. Due to the physically distributed island model, each robot
is able to propagate its current solution to other robots. Individual
robots therefore contribute to the improvement of the entire group
even in individual tasks.

In this section, we analyse the impact of group size on perfor-
mance of odNEAT with neuromodulation. We performed 30 inde-
pendent evolutionary runs for groups of 1, 2, 5 and 8 robots. Ex-
periments were conducted with ten food items of each type. Phase
durations were fixed at pd = 90 mins. Active chromosomes can be
communicated up to a range of 1 meter.

Table 6. Summary of the scalability experiments. Average evaluations
required for producing a stable controller, average and maximum age of each

stable controller. Results are averages over 30 independent runs.

Group Size Average Evals. per Robot Max Age (mins)
1 61.76 ± 37.43 2452.32 ± 1316.86
2 18.01 ± 9.35 5175.95 ± 1055.22
5 29.01 ± 43.73 5305.34 ± 828.30
8 59.65 ± 44.39 4814.39 ± 1162.09

Table 6 shows the experimental results obtained with each group size.
For group sizes of 2 and 5 robots, the stable controllers were capa-
ble of surviving for 86.27 and 88.42 hours, respectively. Within the 8
robots group, this time decreased slightly to 80.24 hours. For groups
of two robots, performance improved significantly (ρ < 0.001, Stu-
dent’s t-test) as the EA requires approximately 70.84% fewer evalu-
ations to generate stable solutions. However, the set of 30 runs was
characterised by two outlier runs in which the evolutionary required
respectively 44.00 and 39.25 evaluations on average to produce sus-
tainable solutions. For groups of five robots, performance also im-
proved compared to the single robot setup. In this configuration,
odNEAT with neuromodulation required approximately 53% fewer
evaluations to evolve controllers well adapted to task changes. From
the set of 30 runs, one is an outlier. In this run, odNEAT with neu-
romodulation required an average of 238.67 evaluations to evolve
solutions well adapted to environmental changes. In fact, this outlier
is the responsible for the high standard deviation in terms of average
number of evaluations per robot. Excluding this run from the results,
the average evaluations would be 24.81± 20.04. Performance levels
would therefore be similar to the setup with a group of size 2.

Figure 5 exemplifies the adaptation process for a group of five
robots during an experiment. In that experiment, before approxi-
mately 2000 minutes, an equivalent to 33.33 hours, all robots had
generated stable controllers. After that, the controllers were able to
survive until the end of the experiment. These results indicate that,
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Table 7. Summary of the minimum and maximum evaluations required for
producing stable solutions in each experimental configuration. The table also

lists the number of runs considered as outliers (see text).

Group Size Min Evals. Max Evals. Outlier Runs
1 8 186 0/30
2 5 44 2/30
5 7 239 1/30
8 8 164 2/30

even with task requirements changing periodically, robots are able to
adapt and coexist in the environment for long periods of time.
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Figure 5. Adaptation process in a group of 5 robots. At the 2000th minute,
all robots have a stable controller that operates until the end of the

experiment (6000 mins).

For groups of 8 robots, evolution of stable controllers takes approx-
imately the same number of evaluations as when only one robot is
present. The set of runs is characterised by two outlier runs that re-
quire respectively 163.875 and 156.82 evaluations to generate sus-
tainable solutions. Excluding these runs from the results, stable con-
trollers would be evolved every 58.05 ± 37.03 evaluations. For
groups of 8 robots, task difficulty increases significantly: for half the
time, there are only ten nutritious food items to support the survival
of the group. Solutions capable of coping with the setup complex-
ity are intuitively harder to evolve, hence the number of evaluations
required per robot.

One interesting aspect is that for group sizes up to 5 robots, there
is a continuous decrease in the complexity added to the initial topol-
ogy. These results are listed in Table 8. The reason for the reduction
in the number of evaluations required, and less complex networks for
groups up to 5 robots, is that each robot attempts to generate its own
solution. When the setup includes only one robot, this one has to rely
on its own gene pool to find a solution for the task. On the other hand,
the presence of other robots in the environment makes odNEAT a
parallel and distributed EA, similar to an island model [33]. In such a
system, each robot acts like an island with genetic information being
exchanged through inter-island migration. Good solutions are more
likely broadcasted to other robots, therefore contributing to the itera-
tive improvement of the entire group [22].

Table 8. Summary of the connections and neurons added to the initial
topology of each stable controller for different group sizes. Results are

averages over 30 independent evolutionary runs.

Group Size Added Connections Added Neurons
1 28.03 ± 22.92 9.37 ± 6.54
2 12.00 ± 9.96 4.92 ± 3.33
5 6.25 ± 2.47 3.57 ± 0.64
8 18.12 ± 12.76 7.30 ± 3.97

4.3.1 Tracking the exchange of genetic material

In order to determine to what extent is a robot affected by the gene
pool of others, we analysed the origin of the information in each
repository. Results are listed in Table 9. Similar solutions refer to the
final, stable chromosomes that have at least 90% of their alleles in
common.

Table 9. Summary of the genetic information in each robot. The table lists
the percentage of chromosomes received and generated, from those stored in
the repository, and the percentage of similar stable controllers for different

groups sizes. Results are averages over 30 independent runs.

Group Size
2 5 8

Chromosomes Received (%) 28.01 68.18 84.50
Chromosomes Generated (%) 71.99 31.82 15.50
Similar Stable Solutions (%) 53.33 54.00 20.69

With the increase of group size, the percentage of chromosomes re-
ceived from other robots and stored in the repository also increases.
For groups of 5 and 8 robots, the majority of the chromosomes in
each repository was received from other robots (68.18% and 84.50%,
respectively). Although for groups of 2 and 5 robots most of the ge-
netic material stored is foreign to the robot, approximately 50% of
the final controllers share 90% of their alleles, i.e., they are simi-
lar. With 8 robots, the percentage of similar solutions decreases to
approximately 20.69%. For distinct groups sizes, there is a strong
link between solutions exchanged among robots. Solutions propa-
gated are frequently used by the evolutionary process embodied in
the receiving robot. The results suggest that local genetic competi-
tion is an important part of the odNEAT’s evolutionary dynamics.

Even stable solutions considered dissimilar, i.e., that share less
than 90% of their alleles, have a relatively high percentage of genetic
material in common. These values are listed in Table 10. For distinct
group sizes (2, 5, and 8 robots), the average percentage of match-
ing genes is 67.81%, 76.38% and 56.22%, respectively. The weights
of matching connections are not very different between dissimilar
controllers either. The average weight difference between matching
connections is approximately 0.70, with each weight w ∈ [−10, 10].

Table 10. Summary of the genetic information regarding dissimilar stable
controllers, i.e., that share less than 90% of their genetic material. The table

lists the percentage of matching and distinct genes, and the weight difference
in matching connections. Results are averages over 30 independent runs.

Dissimilar Group Size
Solutions 2 5 8

Matching Genes (%) 67.81 76.38 56.22
Distinct Genes (%) 32.19 23.62 43.78
Weight Difference 0.66 0.70 0.70
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5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel approach to the online syn-
thesis of behavioural control for groups and swarms of autonomous
robots. We combined odNEAT and neuromodulated learning. While
odNEAT evolves online both the weights and the topology of neu-
ral controllers, neuromodulation allows each individual controller to
actively modify its internal dynamics. We demonstrated our method
through a series of simulation-based experiments in which a group
of e-puck-like robots had to perform a dynamic concurrent forag-
ing task. When neuromodulation is present, the interplay between
evolution and learning allows for a faster synthesis of solutions well
adapted to task requirements. Our results further indicate that the ad-
ditional complexity required to include modulatory neurons in neu-
ral topologies, and the corresponding increase in the search space, is
compensated for by the learning ability and dynamics of modulated
networks. We showed that neuromodulated learning accelerates evo-
lution both when task-requirements change rapidly and when they
remain stable for a long time.

Each modulatory neuron has a low density of modulatory connec-
tions as typically regulates one or two other neurons. Modulatory ac-
tions are mainly targeted at output neurons. In fact, the evolutionary
process leads to the emergence of specialised modulatory neurons
dedicated to exclusively regulating output neurons. These topolog-
ical aspects are the main different between solutions evolved with
and without modulation, and what accounts for the faster synthesis of
sustainable controllers. The scalability experiments revealed that, for
group sizes of 2 and 5 robots, odNEAT with neuromodulation scales
well. Performance increases significantly in respect to the number of
evaluations required to evolve stable solutions. For larger groups, of
8 robots, the complexity of the experimental setup increases drasti-
cally and stable solutions are harder to evolve.

In the future, we intend to investigate the basic requirements for
truly open-ended evolution [4, 10, 28], in which the evolutionary pro-
cess should be capable of producing a large variety of different and
novel solutions to a given task. In this domain, open-ended evolu-
tionary techniques such as novelty search have shown promising re-
sults [13, 16] and may complement our method.
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Structured Composition of Evolved
Robotic Controllers

Miguel Duarte1 and Sancho Oliveira1 and Anders Lyhne Christensen1

Abstract. In this paper, we demonstrate how an artificial neural
network (ANN) based controller can be evolved for a complex task
through hierarchical evolution and composition of behaviors. We
demonstrate the approach in a rescue task in which an e-puck robot
has to find and rescue a teammate. The robot starts in a room with
obstacles and the teammate is located in a double T-maze connected
to the room. We divide the rescue task into different sub-tasks: (i) exit
the room and enter the double T-maze, (ii) solve the maze to find the
teammate, and (iii) guide the teammate safely to the initial room. We
evolve controllers for each sub-task, and we combine the resulting
controllers in a bottom-up fashion through additional evolutionary
runs. We conduct evolution offline, in simulation, and we evaluate
the performance on real robotic hardware. The controller achieved a
task completion rate of more than 90% both in simulation and on real
robotic hardware.

1 Introduction

We study an approach to the hierarchical evolution of behavioral con-
trol for robots. Evolutionary robotics (ER) is a field in which evolu-
tionary computation is used to synthesize controllers and sometimes
the morphology of autonomous robots. ER techniques have the po-
tential to automate the design of behavioral control without the need
for manual and detailed specification of the desired behavior [6]. Ar-
tificial neural networks are often used as controllers in ER because
of their capacity to tolerate noise [12] such as that introduced by im-
perfections in sensors and actuators. Numerous studies have demon-
strated that it is possible to evolve robotic control systems capable of
solving tasks in surprisingly simple and elegant ways [20]. To date
relatively simple tasks have been solved using ER techniques, such
as obstacle avoidance, gait learning, phototaxis, and foraging [18];
but as Mouret and Doncieux write: “. . . this huge amount of work
hides many unsuccessful attempts to evolve complex behaviors by
only rewarding the performance of the global behavior. The boot-
strap problem is often viewed as the main cause of this difficulty, and
consequently as one of the main challenges of evolutionary robotics:
if the objective is so hard that all the individuals in the first genera-
tion perform equally poorly, evolution cannot start and no function-
ing controllers will be found.”. The bootstrapping problem is thus
one of the main reasons that there have been no reports of successful
evolution of control systems for complex tasks.

Several different incremental approaches have been studied as a
means to overcome the bootstrapping problem and to enable the evo-
lution of behaviors for complex tasks. In incremental evolution, the
initial random population starts in a simple version of the environ-

1 Instituto de Telecomunicações & Instituto Universitário de Lisboa (ISCTE-
IUL), e-mail: {miguel duarte,sancho.oliveira,anders.christensen}@iscte.pt

ment to avoid bootstrapping issues. The complexity of the environ-
ment is then progressively increased as the population improves (see
for instance [8, 3]). Alternatively, the goal task can be decomposed
into a number of sub-tasks that are then learned in an incremental
manner (see for instance [10, 4, 3]). While a single ANN controller is
sometimes trained in each sub-task sequentially (such as in [3, 10]),
different modules can also be trained to solve different sub-tasks
(see [4] for an example). The approach presented in this paper falls
in the latter category: we recursively decompose the goal task into
sub-tasks and train different ANN-based controllers to solve the sub-
tasks. The controllers for the sub-tasks are then combined though an
additional evolutionary step into a single controller for the goal task.

We use a task in which a robot must rescue a teammate. Our res-
cue task requires several behaviors typically associated with ER [18]
such as exploration, obstacle avoidance, memory, delayed response,
and the capacity to navigate safely through corridors: (i) an e-puck
robot must first find its way out of a room with obstacles, (ii) the
robot must then solve a double T-maze [2, 5, 22] in which two light
flashes in the beginning of the maze instruct the robot on the location
of the teammate, and finally (iii) the robot must guide its teammate
safely to the room. We evolve behaviors in simulation and evaluate
their performance on a real robot. While there are several studies on
incremental evolution of behavioral control for autonomous robots,
the study presented in this paper is novel in three respects: (i) sub-
tasks are solved by one or more continuous time recurrent neural
networks that are evolved independently, (ii) we introduce the con-
cept of derived fitness functions during composition for sequential
tasks, and (iii) we demonstrate a fully evolved behavioral controller
solving a complex task on real robotic hardware.

The paper is organized as follows: in Section 2, we discuss related
work; in Section 3, we detail our proposed methodology; in Sec-
tion 4, we introduce the e-puck robot and our simulator; in Section 5,
we describe our experimental setup and analyze the results; and fi-
nally, in Section 6, we discuss the applicability and the limitations of
our approach.

2 Background and Related Work

Several approaches to incremental evolution of robotic controllers
have been proposed. The approaches fall into three different cate-
gories: (i) incremental evolution where controllers are evolved with
a fitness function that is gradually increased in complexity; (ii) goal
task decomposition in which a single ANN is trained sequentially on
different sub-tasks; (iii) goal task decomposition in which hierarchi-
cal controllers are composed of different sub-controllers evolved for
different sub-tasks along with one or more arbitrators that delegate
control.
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A methodology belonging to the first category, namely in which
controllers are evolved with a fitness function that is gradually
increased in complexity, was proposed by Gomez and Miikku-
lainen [8]. They used a prey-capture task for their study. First, a sim-
ple behavior was evolved to solve a simplified version of the global
task, in the prey doesn’t move. Gradually, by repeatedly increasing
the prey’s speed, they evolved a more general and complex behav-
ior that was able to solve the prey-capture task. The controllers that
they obtained through the incremental approach were more efficient
and displayed a more general behavior than controllers evolved non-
incrementally. They also found that the incremental approach helped
to bootstrap evolution.

Harvey et al. [10] proposed an approach that falls in the second
category, namely where a single ANN is trained sequentially on dif-
ferent sub-tasks. The authors describe how they evolved a controller
to robustly perform simple visually guided tasks. They incrementally
evolved the controller starting with a “Big Target”, then a “Small Tar-
get”, and finally to a “Moving Target”. The controller was evolved in
few generations and it performed well on real robotic hardware.

Christensen and Dorigo [3] compared two different incremental
evolutionary approaches, to evolve a controller for a swarm of con-
nected robots that had to perform phototaxis while avoiding holes.
They found no benefits in using neither an incremental approach
where the controllers were trained on different sub-tasks sequentially
nor an incremental increase in environmental complexity over a non-
incremental approach for their highly integrated task.

There are several examples of studies on incremental evolution
that fall in the third category, namely in which the global controller
is composed of different sub-controllers that have been trained on
different sub-tasks. Moioli et al. used a homeostatic-inspired GasNet
to control a robot [16]. They used two different sub-controllers, one
for obstacle avoidance and one for phototaxis, that were inhibited or
activated by the production and secretion of virtual hormones. The
authors evolved a controller that was able to select the appropriate
sub-controller depending on internal stimulus and external stimulus.

Nolfi introduced the emergent modular architecture in the early
1990s [19]. In his approach, the designer of the experiment has min-
imal impact on the architecture of the network. Evolution is allowed
to explore the modular properties of the selected ANN: each actua-
tor corresponds to multiple output neurons that compete for activa-
tion. Controllers were evolved for a garbage collection task and were
tested successfully on a real Khepera robot. Soltoggio et al. used
plastic networks with neuromodulation in a double T-maze task [22].
Although their controllers were able to solve the task correctly, the
robot and environmental model used in their study was very simpli-
fied: the inputs of the network consisted of high-level information of
the environment (“at turn”, “at starting position”, “at destination”)
and the movement of the robot consisted of discrete steps through
the maze. Furthermore, their controllers were not transferred to real
robotic hardware.

Lee [14] proposed an approach in which different sub-behaviors
were evolved for different sub-tasks and then combined hierarchi-
cally through genetic programming. The approach was studied in a
task where a robot had to search for a box in an arena and then push it
towards a light source. By evolving different reactive sub-behaviors
such as “circle box”, “push box” and “explore”, the authors managed
to synthesize a robotic controller that solved the task. The author
claims that his controllers were transferable to a real robot, but only
some of the sub-controllers were tested on real hardware. Larsen et
al. [13] extended Lee’s work by using reactive neural networks for
the sub-controllers and the arbitrators instead of evolved programs.

However, the chosen goal task used by both Lee and Larsen is rela-
tive simple and the scalability of their respective approaches to more
complex tasks was never tested.

Our approach shares many similarities with Lee’s [14] and Larsen
et al.’s [13] approaches in that controllers are evolved and composed
hierarchically based on task decomposition. However, as we demon-
strate in this study, our approach scales to complex tasks because
(i) we use non-reactive controllers, and (ii) during the composition
of sub-controllers into larger and more complex controllers, the fit-
ness function for the composed task can be derived directly from the
decomposition. We also demonstrate transfer of behavioral control
from simulation to real robotic hardware without a significant loss
of performance (we cross the reality gap [11]), and we discuss the
benefits of transferring controllers incrementally.

3 Methodology

The main purpose of the proposed methodology is to allow for the
synthesis of behavioral control for complex tasks using an evolution-
ary approach. The controller has a hierarchical architecture and it is
composed of several ANNs (see Figure 1). Each network is either a
behavior arbitrator or a behavior primitive. These terms were used
in [14] to denote similar controller components. A behavior primi-
tive network is usually at the bottom of the controller hierarchy and
directly controls the actuators of the robot, such as the wheels. If it is
relatively easy to find an appropriate fitness function for a given task,
a behavior primitive (a single ANN) is evolved to solve the task. An
appropriate fitness function is one that (i) allows evolution to boot-
strap and to achieve good performance, (ii) evolves a controller that
is able to solve the task consistently and efficiently, and (iii) evolves
a controller that transfers well to real robotic hardware. In case an
appropriate fitness function cannot be found for a task, the task is
recursively divided into sub-tasks until appropriate fitness functions
have been found for each sub-task.

Behavior

Primitive

Primitive

Behavior

Primitive

Behavior

Arbitrator

Behavior

Behavior

Arbitrator

Figure 1. A representation of the hierarchical controller. A behavior
arbitrator network delegates the control of the robot to one or more of its
sub-controllers. A behavior primitive network can control the actuators of

the robots directly.

Controllers evolved for sub-tasks are combined through the evo-
lution of a behavior arbitrator. A behavior arbitrator receives either
all or a subset of the robot’s sensory inputs, and it is responsible for
delegating control to one or more of its sub-controllers. Each be-
havior arbitrator can have a different sub-controller activator. The
sub-controller activator activates one or more sub-controllers based
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on the outputs of the ANN in the behavior arbitrator. The behavior
arbitrators used in this study have one output neuron for each of its
immediate sub-controllers. The sub-controller activator we use acti-
vates the sub-controller for which the corresponding output neuron of
the arbitrator has the highest activation. The state of a sub-controller
is reset when it stops being activated. Alternative sub-controller ac-
tivators could be used, such as activators that allow for multiple sub-
controllers to be activated in parallel. Parallel activation of different
sub-controllers could, for instance, allow a robot to communicate at
the same time as it executes motor behaviors.

If the fitness function for the evolution of a behavior arbitrator is
difficult to define, it can be derived based on the task decomposi-
tion. The derived fitness function is constructed to reward the arbi-
trator for activating a sub-controller that is suitable for the current
sub-task, rather than for solving the global task. The use of derived
fitness functions in the composition step circumvents the otherwise
increase in fitness function complexity as the tasks considered be-
come increasingly complex.

The topology of each network in the hierarchy (such as the number
of input neurons, the number of hidden neurons, and the number out-
put neurons) is completely independent from one another. The basic
behavior primitives are evolved first. The behavior primitive are then
combined though the evolution of a behavior arbitrator. The resulting
controller can then be combined with other controllers through addi-
tional evolutionary steps to create a hierarchy of increasingly more
complex behavioral control. Each time a new sub-controller (either
a behavior primitive or a composed controller) has been evolved, its
performance on real robotic hardware can be evaluated. The exper-
imenter can thus address issues related transferability incrementally
as the control system is being synthesized.

4 Robot and Simulator

We used an e-puck [17] robot for our experiments. The e-puck is a
small circular (diameter of 75 mm) differential drive mobile robotic
platform designed for educational use (see Figure 2). The e-puck’s
set of actuators is composed of two wheels, that enable the robot
to move at speeds of up to 13 cm/s, a loudspeaker, and a ring of
8 LEDs which can be switched on/off individually. The e-puck is
equipped with several sensors: (i) 8 infrared proximity sensors which
are able to detect nearby obstacles and changes in light conditions,
(ii) 3 microphones (one positioned on each side of the robot, and one
towards the front), (iii) a color camera, and (iv) a 3D accelerometer.
Additionally, our e-puck robots are equipped with a range & bearing
board [9] which allows them to communicate with one another.

We use JBotEvolver for offline evolution of behavioral control.
JBotEvolver is an open source, multirobot simulation platform, and
neuroevolution framework. The simulator is written in Java and im-
plements 2D differential drive kinematics. Evaluations of controllers
can be distributed across multiple computers and different evolu-
tionary runs can be conducted in parallel. The simulator can be
downloaded from: http://sourceforge.net/projects/
jbotevolver.

We use four of the e-puck’s eight infrared proximity sensors: the
two front sensors and the two lateral sensors. We collected samples
(as advocated in [15]) from the sensors on a real e-puck robot in
order to model them in JBotEvolver. Each sensor was sampled for
10 seconds (at a rate of 10 samples/second) at distances to the maze
wall ranging from 0 cm to 12 cm. We collected samples at increments
of 0.5 cm for distances between 0 cm and 2 cm, and at increments
of 1 cm for distances between 2 cm and 12 cm. Distance-dependent

noise was added to the sensor readings in simulation corresponding
to the amount of noise measured during the sampling of the sensors.
We furthermore added a 5% offset noise to the sensor’s value. The
e-puck’s infrared proximity sensors can also measure the level of
ambient light. In this study, we use ambient light readings from the
two lateral proximity sensors to detect light flashes in the double T-
maze sub-task. When a light flash is detected, the activation of one
of the two dedicated neurons is set to 1 depending on the side from
which the light flash is detected. The input neuron stays active with
a value of 1 for 15 simulation cycles (equivalent to 1.5 seconds) to
indicate that a flash has been detected. We also included a boolean
“near robot” sensor that lets the robot know if there is any other robot
within 15 cm. For this sensor, we use readings from the range &
bearing board. In simulation, we added Gaussian noise (5%) to the
wheel speeds in each control cycle.

If the control code does not fit within the e-puck’s limited mem-
ory (8 kB), it is necessary to run the control code off-board. When
the control code is executed off-board, the e-puck starts each con-
trol cycle by transmitting its sensory readings to a workstation via
Bluetooth. The workstation then executes the controller, and sends
back the output of the controller (wheel speeds) to the robot. We
use off-board execution of control code in the real robot experiments
conducted in this study.

Figure 2. The e-puck is a differential drive robot with a diameter of 75 mm
and is equipped with a variety of sensors and actuators, such as a color

camera, infrared proximity sensors, a loudspeaker, 3 microphones, and two
wheels. Our e-pucks are also equipped with a range & bearing board that

allows for inter-robot communication.

5 Experiments and Results
In our experiments, a robot must rescue a teammate that is located in
a particular branch of a maze. The robot must find the teammate and
guide it to safety. The environment is composed of a room, in which
the robot starts, and a double T-maze. A number of obstacles are
located in the room. The room has a single exit that leads to the start
of a double T-maze (see Figure 3). In order to find its teammate, the
robot should exit the room and navigate to the correct branch of the
maze. Two rows of flashing lights in the main corridor of the maze
give the robot information regarding the location of the teammate.
Upon navigating to the correct branch of the maze, the robot must
guide its teammate back to the room.

The rescue task is relatively complex, especially given the limited
amount of sensory information available to the robot, and it would be
difficult to find an appropriate fitness function that allows evolution
to bootstrap. We therefore divided the task into three sub-tasks: (i)
exit the room, (ii) solve T-maze to find teammate, and (iii) return to
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the room with the teammate. Below, we detail how we evolved the
controllers to solve the individual sub-tasks, and how we combined
them to obtain a controller for the complete rescue task.

Second
row

First row
of lights

120 cm

20 cm

130 cm

120 cm

160 cm

Teammate

Figure 3. The environment is composed of a room with obstacles and a
double T-maze. The room is rectangular and its size can vary between 1 m
and 1.2 m. The double T-maze has a total size of 2 m × 2 m. The two rows

with the lights are located in the central maze corridor. The activation of
these two rows of lights indicate the location of a teammate.

5.1 Controller Architecture
The structure of the controller for the complete rescue task can be
seen in Figure 4. We recursively divided the task into sub-tasks until
an appropriate fitness function could be found, and we then evolved
the sub-controllers in a bottom-up fashion, starting with the behavior
primitives.

For each evolutionary run, we used a simple generational evolu-
tionary algorithm with a population size of 100 genomes. The fitness
score of each genome was averaged over samples 50 with varying ini-
tial conditions, such as the robot’s starting position and orientation.
After the fitness of all genomes had been sampled, the 5 highest scor-
ing individuals were copied to the next generation. 19 copies of each
genome were made and each gene was mutated with a probability of
10% by applying a Gaussian offset. All the ANNs in the behavior
primitives and in the behavior arbitrators were time-continuous re-
current neural networks [1] with one hidden layer of fully-connected
neurons.

5.1.1 Exit Room Sub-task

The first part of the rescue task was an exploration and obstacle
avoidance task in which the robot must find a narrow exit leading to
the maze. The room was rectangular with a size that varied between
1 m and 1.2 m. We placed either 2 or 3 obstacles in the room de-
pending on its size. Each obstacle was rectangular with side lengths
ranging from 5 cm to 20 cm selected at random. The location of the
room exit was also randomized in each trial.

We found that an ANN with 4 input neurons, 10 hidden neurons,
and 2 output neurons could solve the task. Each of the input neurons

Behavior Primitive

Turn LeftFollow Wall

Behavior Primitive Behavior Primitive

Turn Right

Solve Maze

Behavior Arbitrator

Main

Behavior Arbitrator

Behavior Arbitrator

Return to RoomExit Room

Behavior Primitive

Figure 4. The controller used in our experiments is composed of 3
behavior arbitrators and 4 behavior primitives.

was connected to an infrared proximity sensor, and the output neu-
rons controlled the speed of the robot’s wheels. In order to evolve the
controller, the robot was randomly oriented and positioned near the
center of the room at the beginning of each sample.

Each controller was evaluated according to one of two possible
outcomes: (a) the robot managed to exit the room, and it was assigned
a fitness according to f1,a, or (b) the robot did not manage to find the
exit to the room within the allotted time (100 seconds), and it was
assigned a fitness according to f1,b. Fitness f1,a and f1,b are defined
by:

f1,a = 5 +
maxCycles− spentCycles

maxCycles
(1)

f1,b =
distanceToExit− closestDistanceToExit

distanceToExit
(2)

where distanceToExit is the distance from the center of the room
to its exit, and closestDistanceToExit is the closest point to the
exit that the robot navigated to.

The “exit room” controllers were evolved until the 500th genera-
tion and each sample was evaluated for 1000 control cycles, in a total
of 10 evolutionary runs. The controllers achieved an average solve
rate of 52%, with a solve rate of 96% in the best evolutionary run.
The best performing controller starts by moving away from the cen-
ter of the room until it senses a wall, which it then follows clockwise
until the room exit is found. 3 of the 10 evolutionary runs produced
controllers capable of finding the exit of the room in over 90% of the
samples. The remaining runs did not produce successful behaviors:
the robots would spin/circle around, sometimes finding the exit by
chance and often crashing into one of the surrounding walls or into
an obstacle.

5.1.2 Solve Double T-maze Sub-task

In the second sub-task, the robot had to solve a double T-maze in
order to find the teammate that had to be rescued. The robot was
evaluated according to one of three possible different outcomes: (i) if
the robot successfully navigated to its goal, it was assigned a fitness
based on f2,a, (ii) if the robot navigated to an incorrect branch or if it
collided into a wall, it was assigned a fitness based on f2,b, and (iii)
if the time expired, the robot was assigned a fitness of 0. f2,a and
f2,b are defined by:
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f2,a = 1 +
maxCycles− spentCycles

maxCycles
(3)

f2,b =
totalDistance− currentDistanceToDest

3 · totalDistance
(4)

where totalDistance is the distance from the start of the maze to
the teammate, and currentDistanceToDest is the final distance
from the main robot to its destination.

We experimented with using a single ANN to solve this sub-task.
The ANN was composed of 6 input neurons, 10 hidden neurons, and
2 output neurons. The input neurons were connected to the 4 prox-
imity sensors and the 2 light sensors. The output neurons directly
controlled the speed of the wheels.

We conducted 10 evolutionary runs, each lasting 1000 genera-
tions. The controllers were post-evaluated and the fitness of every
controller was sampled 100 times for each of the 4 possible light
configurations. The evolved controllers had an average solve rate of
only 40%. The best controller had a solve rate of 83%, with just 3
other controllers were able to correctly solve the T-maze in more than
50% of the samples.

Since we could not obtain controllers that could solve the task
consistently, we followed our methodology and further divided the
solve maze sub-task into three different sub-tasks: “follow wall”,
“turn left” and “turn right”, for which appropriate fitness functions
could easily be specified. The behavior primitive network for each
of these three sub-tasks had 4 input neurons, 3 hidden neurons, and
2 output neurons. The input neurons were connected to the infrared
proximity sensors and the outputs controlled the speed of the wheels.
The three behavior primitives were evolved in corridors of different
lengths. The environment for the “turn” controllers was also com-
posed of either left or right turns, depending on the controller.

A total of 5 evolutionary runs were simulated for each of the basic
behaviors (“follow wall”, “turn left” and “turn right”). The evolu-
tionary process lasted 100 generations, and the best controller from
each evolutionary run was then sampled 100 times in order to eval-
uate the controller’s solve rate. The “turn left” controllers achieved
an average solve rate of 89%, with a solve rate of 100% for the con-
troller that obtained the highest fitness; the “turn right” controllers
achieved an average solve rate of 69%, with a solve rate of 100%
for the controller that obtained the highest fitness; and the “follow
wall” controllers achieved an average solve rate of 99%, with a solve
rate of 100% for the controller that obtained the highest fitness. The
controllers for the basic behaviors achieved a good performance in
relatively few generations and the majority of the evolutionary runs
converged to the optimal solve rate, with an occasional run getting
stuck in a local optimum.

We then evolved a behavior arbitrator with the three best behavior
primitives as sub-controllers. The behavior arbitrator network had 6
inputs, 10 hidden, and 3 output neurons. The inputs were connected
to the 4 infrared proximity sensors and the 2 light sensors. At the be-
ginning of each trial, the robot was placed at the start of the double
T-maze and had to navigate to the correct branch based on the activa-
tions of the lights that were placed on the first corridor (see Figure 3).
For instance, if the left light of the first row and the right light of the
second row were activated, the robot should turn left at the first junc-
tion and right at the second junction. The fitness awarded was either:
(i) f2,a, if the robot successfully navigated to its teammate’s location,
(ii) f2,b if the robot navigated to an incorrect branch of the maze or
collided into a wall, or (iii) a fitness of 0 if the time expired before
the robot managed to enter a branch of the maze. The sample was ter-

minated if the robot collided into a wall or if it navigated to a wrong
branch of the maze.

The evolution process lasted until the 1000th generation, in a total
of 10 evolutionary runs. The controllers achieved an average solve
rate of 93%, with a solve rate of 99.5% for the highest performing
controller.

To test the controller on real robotic hardware, we built a dou-
ble T-maze with a size of 2 m × 2 m (see Figure 3). In the real
maze, the flashing lights were controlled by a Lego Mindstorms NXT
brick. The brick was connected to four ultrasonic sensors that de-
tected when the robot passed by. Lights were turned on by the 1st
and 3rd ultrasonic sensor and turned off by the 2nd and 4th ultra-
sonic sensor. The brick controlled the state of the lights using two
motors.

5.1.3 Return to Room Sub-task

The final sub-task consisted of the robot guiding its teammate back
to the first room. For this sub-task, we reused the behavior primi-
tives previously evolved for maze navigation (“follow wall”, “turn
left” and “turn right”) and we evolved a new behavior arbitrator. The
behavior arbitrator network was trained in the double T-maze with
the robot starting in one of the four branches of the maze (chosen at
random in the beginning of each trial). The behavior arbitrator had 4
input neurons, 10 hidden neurons, and 3 output neurons. The input
neurons were connected to the robot’s infrared proximity sensors and
the output neurons selected which sub-controller should be active.

The teammate being rescued was preprogrammed to follow the
main robot once it was within 15 cm. We used the e-puck range &
bearing extension board to determine the distance between the two
robots. Since this was a task in which the robot had to navigate cor-
rectly through the maze, we used the same fitness function as in the
solve double T-maze sub-task described in the previous section. The
only difference was the objective: the robot was evaluated based on
its distance to the entrance of the maze, not the distance to the team-
mate.

We conducted a total of 10 evolutionary runs until the 500th gen-
eration for the “return to room” behavior. The controllers achieved an
average solve rate of 75%, with a solve rate of 100% for the highest
performing controller.

5.2 Evolving the main controller

For the composed task, we evolved a behavior arbitrator with the
controllers for the exit room, the solve maze, and the return to room
tasks as sub-controllers. The robot had to first find the entrance to the
double T-maze, then navigate the maze in order to find its teammate,
and finally guide the teammate safely back to the room. The behavior
arbitrator for the complete rescue task had 5 input neurons, 10 hidden
neurons, and 3 output neurons. The inputs were connected to the
4 infrared proximity sensors and to a boolean “near robot” sensor,
which indicated if there was a teammate within 15 cm (based on
readings from the range & bearing board).

We evolved the controller with a derived fitness function that re-
wards the selection of the right behaviors for the current sub-task.
The controller was awarded a fitness value between 0 and 1 for each
sub-task (for a maximum of 3 for all sub-tasks), depending on the
amount of time that it selected the correct behavior. The fitness func-
tion is a sum of the equation f3 for each of the 3 sub-tasks. f3 is
defined as follows:
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f3 =
correctBehaviorCycles

totalBehaviorCycles
(5)

where totalBehaviorCycles is the number of simulation cy-
cles that the controller has spent in a particular sub-task, and
correctBehaviorCycles is the number of cycles in which the con-
troller chose the sub-controller for that particular sub-task.

We ran 10 evolutionary runs until the 1000th generation for the
composed task controller. The fitness of each genome was sampled
20 times and the average fitness was computed. Each sample lasted a
maximum of 2000 control cycles (equivalent to 200 seconds). The 10
resulting controller achieved an average solve rate for the composed
task of 85%, with a solve rate of 93% for the highest performing
controller.

We analyzed how the main controller managed to solve each part
of the composed task. On the “exit room” task, all 10 controllers
averaged a solve rate of 91%. This means that all the controllers
successfully learned that they should activate the exit room behav-
ior primitive in the first part of the composed task.

After exiting the room, the controller should activate the “solve
maze” behavior in order to find the robot’s teammate. An important
detail is that once the controller selects this behavior, it should not
switch to another one until it reaches the end of the maze: switching
resets the state of the selected sub-controller, meaning that the “solve
maze” behavior arbitrator would forget which light flashes previously
sensed. The average solve rate dropped from 91% to 88%, which
means that only 3% of all the samples failed at solving the maze
sub-task.

Upon finding the teammate, the robot should return to the starting
point, completing the composed task. Ideally, this should be done by
activating the return behavior at the end of the maze. The 10 con-
trollers achieved an average solve rate of 85%.

5.3 Transfer to the real robot

After evaluating all the different evolutionary runs, the best perform-
ing controller from the simulation was tested on a real e-puck. The
robot had to solve the composed task: find the exit of the initial room,
navigate the double T-maze to the correct branch, and return to the
room. We used a room with a size of 120 cm × 100 cm for our
real robot experiments. Three identical obstacles with side lengths of
17.5 cm and 11 cm were placed in the room as shown in Figure 3. We
sampled the controllers 6 times for each light combination, for a total
of 24 samples. Since the purpose of these experiments was to test the
transferability of the evolved controller, the teammate was not used
and the near-robot sensor was remotely triggered if the robot reached
the correct maze branch.

The controller solved the composed task on the real robot in 22 out
of 24 samples (a solve rate of 92%). It consistently chose the correct
sub-network at each point of the task, and only failed in the return to
room behavior twice.

We ran additional proof-of-concept experiments in which we in-
clude a teammate that was preprogrammed to follow the main robot
back to the initial room. Videos of these experiments can be found in
http://home.iscte-iul.pt/˜alcen/erlars2012/.

6 Conclusions

In this study, we demonstrated how controllers can be composed in a
hierarchical fashion to allow for the evolution of behavioral control
for a complex task. We started by decomposing the goal task into

sub-tasks until a controller for each sub-task could easily be evolved.
When we combined the sub-controllers, we used a derived fitness
function that rewarded controllers for activating the sub-controller
corresponding to the current sub-task rather than for solving the
global task. We evaluated the evolved behavior on a real e-puck per-
forming a rescue task. The real robot managed to solve the task in
22 out of 24 experiments (solve rate of 92%), which is similar to the
robot’s performance in simulation (solve rate of 93% in 400 experi-
ments).

Our approach overcomes a number of fundamental issues in evo-
lutionary robots. Often the experimenter has to go through a tedious
trial and error process in order to design a suitable fitness function
for the task at hand. In our approach, we recursively divide tasks
into sub-tasks until a simple fitness function can easily be specified.
We tried to evolve a single ANN-based controller for the solve maze
sub-task, for instance, but since bootstrapping proved difficult, we
divided the solve maze task into sub-tasks (follow wall, turn left, and
turn right). For each of these simple tasks, fitness functions that al-
lowed evolution to bootstrap were straightforward to specify.

Although more complex evolutionary algorithms, such as novelty
search [21], might allow evolution to find solutions for more complex
tasks, they would have their limitations. In our study, we show that,
by following a divide and conquer approach, we can evolve control
for a complex task using a very simple evolutionary algorithm which
cannot evolve control for the complete task. For a more advanced
algorithm, the divisions may be more coarse, but we could apply the
same principles.

During the composition of sub-behaviors, we use a fitness function
directly derived from the immediate decomposition, that is, a fitness
function that rewards a controller for activating an appropriate sub-
controller given the current situational context: after we had obtained
controllers for each of the three sub-tasks, exit room, solve maze, and
return to room, we combined them in an additional evolutionary step.
During evolution, an arbitrator (an ANN) was rewarded for (i) acti-
vating the exit room sub-controller while the robot was in the room,
(ii) the solve sub-controllers while the robot was in the maze, and
(iii) the return to room behavior after the teammate had been located.
In this way, we avoid that the complexity of the fitness function in-
creases with the task complexity as sub-behaviors are combined.

The transfer of behavioral control from simulation to a real robot
is usually a hit or miss because a controller for the goal task is com-
pletely evolved in simulation before it is tested on real hardware. In
our approach, the transfer from simulation to real robotic hardware
can be conducted in an incremental manner as behavior primitives
and sub-controllers are evolved. This allows the designer to address
issues related to transferability immediately and locally in the con-
troller hierarchy.

The applicability of our approach depends on if the task for which
a controller is sought can be broken down into reasonably indepen-
dent sub-tasks. For highly integrated tasks where it is unclear if or
how the goal task can be divided into sub-tasks [3], our approach may
not be directly applicable. However, in cases where a controller for an
indivisible sub-task cannot be evolved, either because a good fitness
function cannot be found or because evolved solutions do not trans-
fer well, the evolved control may be combined with preprogrammed
behaviors [5].

The potential cost of an engineered approach, such as the approach
proposed in this paper, is that evolution is constrained. Surprisingly
simple and elegant solutions that the experimenter did not foresee
may therefore never be discovered. Some researchers advocate the
use of implicit, behavioral, and internal fitness functions [7], because

5th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2012)
Montpellier, France, August 28 2012

24



fitness functions with such characteristics, in theory, allow for solu-
tions to emerge through an autonomous self-organization process. In
practice, however, such fitness functions, which are supposed to be
redeemed from any constraints imposed by a priori knowledge, are
often the result of a series of unsuccessful experiments. After each
unsuccessful experiment, the fitness function is modified based on
the results of the experiment and based on the experiment’s guess
concerning what may be “wrong”. As a result, the fitness function
used in the final successful experiment often contains factors and
values, and sometime even entire terms that seem arbitrary.

We do not dismiss the potential benefits of implicit, behavioral,
and internal fitness functions in our approach. Instead, we suggest
to divide the task into two or more sub-tasks, when such a fitness
function cannot easily be found. In this way, controllers for complex
tasks can be synthesized in a hierarchical fashion, while at the same
time, they can benefit from evolutionary robotics techniques, namely
(i) automatically synthesis of control, and (ii) evolution’s ability to
exploit the way in which the world is perceived through the robot’s
(often limited) sensors. Our long-term goal is to combine the bene-
fits of manual design of behavioral control with the benefits of auto-
matic synthesis though evolutionary computation to obtain capable,
efficient, and robust controllers for real robots.
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Improved State Aggregation with Growing Neural Gas in
Multidimensional State Spaces

Michael Baumann1 and Timo Klerx2 and Hans Kleine Büning2

Abstract. Q-Learning is a widely used method for dealing with re-

inforcement learning problems. However, the conditions for its con-

vergence include an exact representation and sufficiently (in theory

even infinitely) many visits of each state-action pair—requirements

that raise problems for large or continuous state spaces. To speed up

learning and to exploit gained experience more efficiently it is highly

beneficial to add generalization to Q-Learning and thus enabling the

transfer of experience to unseen but similar states. In this paper, we

report on improvements for GNG-Q, an algorithm that solves rein-

forcement learning problems with continuous state spaces and simul-

taneously learns a proper abstract state space. This approach com-

bines Q-Learning and growing neural gas (an adaptive vector quan-

tizer) to compute a state space abstraction. It starts with a coarse

resolution that is gradually refined based on information achieved

during learning. We improve the dealing with the non-determinism

that may emerge in abstracted state spaces, suggest a new refinement

strategy and propose a new criterion to decide when a refinement is

necessary. Furthermore, we argue that this criterion offers an implicit

local stopping condition for changes made to the approximation. Ad-

ditionally, we employ eligibility traces to speed up learning. We eval-

uate the improved method in continuous state spaces with up to four

dimensions and compare the results with several approaches from

literature. Our experiments confirm that the modifications highly im-

prove the efficiency of the abstract state space and that our approach

is well competitive with existing methods.

1 Introduction

In reinforcement learning (RL), an agent has to learn a policy to solve

a given problem—just from interaction with a (probably unknown)

environment. It does so by trying its available actions in the differ-

ent states of the environment and uses the (maybe delayed) scalar

feedback—the reward—from the environment to update its estima-

tion of the policy. The environment has to offer rewards in a way that

the agent can learn a useful behavior by maximizing these rewards

over time. RL problems are often modeled as Markov decision pro-

cesses (MDP) [17] and can be solved with temporal difference meth-

ods that usually store the learned behavior in a tabular representation

for each possible combination of states and actions. One well-known

RL algorithm is Q-Learning [21] (for detailed information on other

approaches we refer to [18, 17]) that is proven to converge to an op-

timal policy under several conditions [20]. These conditions include

to visiting each state-action pair infinitely often. This requirement is

fraught with problems in large or continuous state spaces that can be

1 International Graduate School “Dynamic Intelligent Systems”, University
of Paderborn, 33095 Paderborn, Germany, email: mbaumann@upb.de

2 University of Paderborn, 33095 Paderborn, Germany

found in realistic settings. To use aforementioned table-based meth-

ods, continuous state spaces have to be discretized—a step that often

needs domain knowledge to find a proper resolution of the approxi-

mation.

Large state spaces suffer from two severe problems: First, the

curse of dimensionality (the search space grows exponentially in

the number of states) induces high memory requirements. Second,

the large amount of state-action pairs inhibits the agent to gather

enough knowledge for each possible state as the probability to ex-

perience a certain state more than once decreases as the size of the

state space increases. One way to cope with these problems is the

use of generalization—i.e. transfer knowledge to unseen but simi-

lar states—that can e.g. be achieved by aggregating states [11]. For

detailed overviews of other approaches, we refer to [4] or [19].

In this paper we analyze the GNG-Q approach [1] and investigate

its behavior on a continuous state RL task: An agent is situated in a

2-dimensional environment and has to learn the shortest path from

any position to the goal (cf. Sec. 5). Furthermore, we investigate two

multi-dimensional problems: a d-dimensional continuous world and

the acrobot swing up problem [16].

The idea of GNG-Q is to learn the behavior and its representation

in parallel using a combination of Q-Learning and the unsupervised

growing neural gas (GNG) vector quantizer [9]. GNG-Q assumes that

similar states need similar behavior and computes a Voronoi tessel-

lation of the state space and treats all states in one region equally.

The core idea of GNG-Q is as follows: The approximation is initially

very coarse and is refined in regions that contain incompatible states.

In each learning step, the agent uses the current approximation to up-

date its estimated policy. Simultaneously, changes in the learned pol-

icy point out regions that have to be refined. Thus, an abstracted state

space is built by aggregating compatible states and this abstraction is

adjusted based on the interaction during learning without knowing

the environment in advance.

Our contribution is as follows: 1. We argue, that abstracted state

spaces may introduce non-determinism and adapt the Q-update to

better cope with this situation. 2. A new operation for refining regions

of states is introduced. 3. We provide new criteria for the refinement

and adaptation of the approximation and argue how these criteria lead

to an implicit stopping condition for adjustments on the approxima-

tion. 4. Eligibility traces are incorporated to speed up learning. 5.

We experimentally evaluate the influences of the parameters in the

approach and compare its performance to other approaches. The en-

hancements in the updated algorithm called GNG-Q+ lead to a sig-

nificant decrease in the size of the approximation and an improved

regulation of the refinement and adaptation. Furthermore, our ad-

justed use of the edges in the graph offers a means to model the state

transition function for the abstracted states and allows to removing
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dead regions. Our experiments confirm, that GNG-Q+ is well com-

petitive with other approximative approaches and that GNG-Q+ is

able to efficiently compute a useful policy in parallel with a compact

state space approximation. The proposed approach operates on-line

and does not need the underlying model of the considered reinforce-

ment learning problem. Additionally, it does not need to incorporate

domain knowledge and the approximation offers flexible and adap-

tive shapes. After learning, the policy can be stored very efficient as

only the Voronoi centers of the approximation and the associated ac-

tion values are needed. The mapping of one state of the original state

space to its abstraction is realized by a nearest neighbor rule and is

thus very fast and easy to implement.

2 Related Work

Another approach that uses vector quantization was introduced in

[11]. There, an adaptive vector quantizer is used to partition the

state space while the agent is learning. The partitioning is carried

out based on proximity in the state space and similarity regarding

the rating of actions generated by Q-Learning. The approximation is

refined if the reward accumulated in one region is exceeding some

threshold and a predefined minimal distance to all neighboring code

words is kept. In this approach, the centers of the created regions

are not able to move and domain knowledge is required to determine

useful values for the thresholds used. Fernández et al. [8] present the

VQQL model that consists of the generalized Lloyd algorithm for

vector quantization and Q-Learning. It uses vector quantization to

obtain a set of codebook vectors that represent the state space. In a

subsequent step, Q-Learning is used to learn a policy based on this

reduced representation. The key difference to the GNG-Q and GNG-

Q+ approaches is that Fernández et al. construct the state space rep-

resentation independent from learning. Ratitch and Precup [13] also

follow a similar approach as they place units as centers for an ap-

proximation. Their goal is to add a new unit if for the current state

the number of nearby units is below some threshold.

Konidaris et al. [10] approximate continuous environments with

the Fourier basis, a method that employs Fourier series to approxi-

mate the optimal value function. They compare their approach empir-

ically to various other basis function approaches and conclude that its

performance is similarly good. Unfortunately, this approach seems to

be rather run time consuming.

Adaptive Tile Coding [22] is an approach that learns a policy in

parallel with an appropriate state space abstraction. Starting with a

very coarse approximation consisting of just one tile, it is refined

based on information (e.g. based on the policy) from learning. The

refinement operation splits one tile evenly in half, which will often

lead to problems as it may happen that many splits are needed until

incompatible states are separated. Another Tile Coding approach was

presented in [12] where a genetic algorithm was used to decide upon

refinements allowing unevenly splits. A drawback of this algorithm

may be that it is executed for several resolutions of the approxima-

tion.

3 State Space Abstraction in Reinforcement
Learning

This section presents the theoretical model of state space abstraction

and shows, how the agent uses the transition and reward functions of

the original Markov decision process (MDP) to update the abstracted

MDP. Additionally, we describe the GNG-Q approach that we adapt

in Sec. 4.

3.1 Theoretical Model

Single agent reinforcement learning problems are usually modeled

as Markov decision processes (MDP). In this work, we consider

continuous state spaces in deterministic environments with discrete

time steps and discrete actions. Thus, we define a MDP as M =
(S,A,T, r) where the transition function T : S × A → S returns

the succeeding state T(st, at) = st+1 ∈ S after performing action

at ∈ A in state st ∈ S. The reward function r : S ×A→ R reflects

the immediate merit of this execution.

Q-Learning [21] is one frequently employed algorithm to learn

an optimal policy π⋆. It approximates the action-value function

Q⋆(s, a) that expresses the expected accumulated reward for per-

forming action a in state s and following an optimal policy after-

wards. The agent incrementally updates its approximation Q̂ of the

action-value function Q(st, at) during interaction with the environ-

ment: it executes at in st and observes the succeeding state st+1 and

the reward rt = r(st, at). The approximation is then updated ac-

cording to Q̂t+1(st, at) := (1 − αt)Q̂t(st, at) + αt

[
r(st, at) +

γmaxa′∈A Q̂t(st+1, a
′)
]

with the learning rate α and discount fac-

tor γ. Q-Learning is proven to converge to the true Q-function given

that each state-action pair is updated infinitely often, an exact rep-

resentation of the policy is used and the learning rate αt fulfills∑
t
αt = ∞ and

∑
t
α2
t < ∞ [20]. As pointed out earlier, large

state spaces introduce severe issues and it is thus highly beneficial

to introduce some kind of generalization [17]. Amongst many others

(for detailed overviews see [19] or [4]), one approach to deal with

large state spaces is the use of state space abstractions. Following

[19], we define an abstract state space as follows:

Definition 1 (State Space Abstraction) Let M = (S,A,T, r) be a

deterministic Markov decision process. We define the corresponding

abstracted MDP M̂ = (Ŝ, A,T, r) where Ŝ is a partition of the

actual state space S and usually |Ŝ| ≪ |S| holds. Each abstract

state ŝ ∈ Ŝ is defined as a set ŝ := {s | ψ(s) = ŝ, s ∈ S} where

the abstraction-function ψ is a mapping ψ : S → Ŝ that maps each

state of S to one of the states of the abstracted state space Ŝ. Thus, ψ

provides a partition of S with
⋃

ŝ∈Ŝ
ŝ = S and ŝ1∩ ŝ2 = ∅, ∀ ŝ1 6=

ŝ2 ∈ Ŝ.

The value functions in RL for an abstract MDP M̂ can be learned

from interactions with the original MDP M: The agent observes a

state st ∈ S and performs action at that takes it to the subsequent

state st+1 = T(st, at) and results in a reward r(st, at). This infor-

mation can be used e.g. in a Q-Learning update for the abstracted

MDP [19]:

Q̂t+1(ψ(st), at) := (1− αt)Q̂t(ψ(st), at)

+ αt

[
r(st, at) + γmax

a′∈A
Q̂t(ψ(st+1), a

′)
]

(1)

Note, that the update for one abstract state ŝ affects all states s ∈ S
that are abstracted to ŝ, i.e. all states s for which ψ(s) = ŝ hold. This

is a major advantage as one update affects several states and each

(maybe unseen) state is treated equally as any other state abstracted

to the same abstract state.

3.2 Growing Neural Gas State Quantizer

One approach to learn an approximation of the state space while per-

forming reinforcement learning was presented in [1]. This approach

learns the behavior and its representation in parallel: An adaptive
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vector quantizer (growing neural gas (GNG), [9]) is used to approx-

imate the state space and in each learning step, Q-Learning is exe-

cuted on the current approximation. The goal is to find a partition of

the state space in regions such that each region contains states that

can be treated equally. GNG-Q (summarized in Alg. 1) uses infor-

mation collected during learning to adjust the approximation. Thus,

the abstraction function ψ and the agent’s approximation Q̂ for the

abstracted MDP are learned in parallel.

GNG-Q aggregates states to so called state regions that are similar

regarding some measure and require the same behavior. All states in

one state region are treated equally and share one Q-vector. These

regions are built using a growing neural gas: A set of units n ∈ N

called neurons are positioned in the state space and a Voronoi tes-

sellation is created by a nearest neighbor rule that assigns any state

s ∈ S to the nearest neuron nn(s) = argminn′∈N d(s, n′) using

some distance measure d. The abstraction function ψ is thus defined

by the set Nt of neurons at time t and the nearest neighbor rule.

In each learning step, the nearest and second nearest neurons

n1, n2 to the current state st are determined and both neurons are

connected with a neighborhood connection. These connections are

equipped with an age that is used to remove outdated connections.

We call such connected neurons n1 and n2 topological neighbors.

The goal of the refinement is to relieve regions with incompati-

ble states by splitting them. In the growing neural gas approach, a

local error is introduced for each neuron. In the GNG-Q approach,

the error is a counter for the changes in the policy in the respective

region. Initially, the approximation has a very coarse resolution and

in each learning step, Q-Learning is applied to the current approx-

imation. Regions that need refinement are identified by monitoring

changes in the policy learned so far: Every time, a Q-update causes

that argmaxa Q̂t(n1, a) 6= argmaxa Q̂t+1(n1, a) holds, the error

for the current state’s region is increased as this means, that the agent

would now prefer a different action for this region. The approxima-

tion is periodically refined by adding a new neuron in the region with

the highest error because this is evidence that the region consists of

states that have to be treated separately to obtain a good policy.

In the generic growing neural gas approach, neurons are moved

in order to adapt to the probability distribution by which the sam-

ples of the input space are drawn. In RL one has to deal with se-

quences of samples as the agent interacts with the environment in

such a way that it iteratively transitions from one state to a subse-

quent state. Thus, the network in GNG-Q would try to follow the

trajectories of the agent. In order to prohibit this behavior and to sup-

ply a static approximation during each episode, an additional set is

introduced for each region: The so-called regional states Rn store

the states, the agent visited in n’s region during the current episode.

After each episode, each neuron n is moved a small portion ǫb to-

wards the centroid ofRn. Additionally, each topological neighbor of

n is moved a much smaller portion ǫn ≪ ǫb towards the centroid of

Rn. Thus, the positions of the neurons adapt to states visited during

the last episode.

4 Revised Growing Neural Gas Q-Learning

This section argues that non-determinism may occur in the abstract

state space although the original MDP is deterministic. We argue how

to better deal with this non-determinism, show how to add eligibility

traces to speed up learning, investigate the role of neighborhood con-

nections and introduce criteria for the movement and the refinement

as well as a revised refinement method. Finally, we sum up the new

algorithm called GNG-Q+ in Alg. 2.

Algorithm 1: GNG-Q (the numbers in braces indicate changes

made in GNG-Q+)

foreach episode do

while episode not finished do

observe st, perform at, observe st+1 and r(st, at)
use current approximation to compute ψ(st), ψ(st+1)
update Q-estimation according to Eq. 1 (1)

update neighbor connections and error values (2)

if network still adapts then insert a new neuron every

λ’th iteration (3)

if network still adapts then
adapt n and n’s topological neighbors to centroid of n’s

regional states Rn (4)

4.1 Dealing with Induced Non-Determinism

Although we consider deterministic environments—the state transi-

tion function as well as the reward function is deterministic—the ag-

gregation of states can introduce non-determinism in the abstracted

MDP: Consider the situation in a shortest path scenario depicted in

Fig. 1: If the agent performs the action “go right” in one of the states

abstracted by the region ŝ1, then, depending on its location in this

region, the subsequent state can be in region ŝ2 or ŝ3. As the agent

updates its estimates of Q̂(ŝ1,→) depending on the Q-vector of the

succeeding state, the Q-values are prone to oscillate. This problem

occurs, if there are at least two states s1, s2 in one region ŝ that

result in states that are abstracted by different abstract states after

performing the same action, formally: ∃s1 6= s2 ∈ ŝ, ∃a ∈ A :
ψ(T(s1, a)) 6= ψ(T(s2, a)). This kind of non-determinism can be

caused by irregular shaped regions (as in the GNG-Q approach, cf.

Fig. 1(a)) but may also occur whenever transitions between differ-

ently sized abstract states are possible (cf. Fig. 1(b)). In [8], this non-

determinism is also called “the loss of the Markov property” as the

subsequent state ŝt+1 now not only depends on ŝt but also on the

states visited before time t.

To improve the behavior with this non-determinism in the abstract

MDP, we equip GNG-Q+ with a learning rate αt that depends on the

time step t such that
∑

t
αt = ∞ and

∑
t
α2
t < ∞ hold. Note, that

this is the same condition on the learning rate as given in [20] for the

convergence of Q-Learning. Following the idea of [7], such a learn-

ing rate can be constructed as αt =
1

1+visits(ŝ,a)ω
where visits(ŝ, a)

is the number of executions of action a in the abstracted state ŝ and

ω is a constant to regulate the decrease of the learning rate over time.

To fulfill the condition above, 0.5 < ω ≤ 1 has to hold. This learning

rate decreases the influence of updates of each (ŝ, a) over time and

helps to reduce the oscillation of the Q-values. The original GNG-Q

did not consider this non-determinism and used a constant learning

rate. Thus, the Q-update (1) in GNG-Q+ is adapted to use a learning

rate αt as described.

Abstracting states transforms the learning problem in something

close to a partially observable MDP (POMDP) [15, 19]. Unfortu-

nately, this improvement does not provide a solution for the POMDP,

but it introduces more stability to the learning process.

4.2 Adding Eligibility Traces

One way to speed up learning in reinforcement learning problems is

the use of eligibility traces [6]. They offer a means to distribute im-

mediate reward to all state-action pairs (s, a) that have been visited
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ŝ1 ŝ2

ŝ3

→ ↑

↓

(a)

→

ŝ1 ŝ3↓

ŝ2↑

(b)

Figure 1. Induced non-determinism in different approximation schemes:

The action → in ŝ1 may lead to different succeeding states depending on

the actual state that is abstracted to ŝ1.

during the current episode according to their eligibility e(s, a). This

counter is increased by 1 every time the action at is performed in

the current state st and if at is the action with the highest Q-value

for state st. If at is not the maximal action, the eligibility traces for

all state-action pairs are reset to zero. Additionally, each e(s, a) is

decayed by a factor λ ∈ [0, 1] for all state-action pairs:

et+1(s, a) =






γλ(et(s, a) + 1) if s = st and a = at = a⋆

0 if at 6= a⋆

γλet(s, a) if s 6= st or a 6= at

with a⋆ = argmaxa′ Q̂t(s, a
′). Thus, reward or punishment can be

credited for all state-action pairs that were “responsible” for it. If the

agent performs an exploratory action (i.e. an action that has not the

highest Q-value for the current state), the eligibility traces are cut off.

In every update, the temporal difference error δt is computed as

δt = r − Q̂t(st, at) + γmaxa′ Q̂t(s
′
t, a

′) between the current state

st and the succeeding state st+1. This value is added to the Q-value

of every state-action pair:

Q̂t+1(s, a) = Q̂t(s, a) + αtδtet(s, a), ∀s ∈ S, ∀a ∈ A

The method used here is called Watkins’s Q(λ) [17]; for a comparison

of other approaches see [17, 6]. The transformation of this approach

to neurons is straightforward: For each neuron n, we use et(n, a) to

express the eligibility for this neuron-action pair (compare Alg. 2).

4.3 Neighborhood Connections

In each update, the nearest neuron n1 to the current state s and the

nearest neuron n′
1 to the subsequent state are connected if n1 6= n′

1.

Thus, the neighborhood connections abstract the transitions of the

original MDP to the abstracted MDP: Each connection between two

abstract states ŝ1 and ŝ2 implies that an action performed in a state

s1 with ψ(s1) = ŝ1 resulted in a state s2 with ψ(s2) = ŝ2 (or vice

versa as the connections are undirected). Every time, a neuron n1

is the nearest neuron to the current state, the age of all connections

(n1, n
′) connecting n1 with its neighbors n′ is increased. Further-

more, a new connection (n1, n
′
1) is created with n′

1 representing the

nearest neuron of s2. If this connection already exists, its age is reset

to zero. If the age of any connection exceeds agemax , the connection

is removed as this is evidence, that this connection is outdated: Con-

sider the latest agemax neuron-action pairs (n, a) then there was no

action that lead from n1 to n′
1 (or vice versa). Thus it is save to as-

sume, that the approximation changed in a way that there is no action

that leads from any state abstracted by n1 to any state abstracted by

n′
1 (or vice versa). If the deletion of connections results in isolated

neurons, these may be removed as well, as they tend to be unreach-

able following the same argumentation.

Contrary to GNG-Q and the generic growing neural gas algorithm

that use the neighborhood connections to adapt the nearest neuron

and all its topological neighbors, GNG-Q+uses the neighborhood

connections to determine “dead” abstract states, i.e. abstract states

that have not been visited for a long time (cf. Alg.1, (2)). Reasons for

this could be changes in the environment or changes in the approxi-

mation due to adaptations or refinements. Additionally, the neighbor

connections in GNG-Q+ could be used to model an abstract transi-

tion function T̂ : Ŝ ×A→ Ŝ for the abstracted MDP M̂.

4.4 Adjusting the Approximation

After each episode, the approximation can be adjusted by two opera-

tions: The adaptation moves the neurons in such a way that they rep-

resent the state space as good as possible and the refinement is used

to split regions that contain incompatible states. In the following, we

will present changes to these operations and state new conditions for

their application.

In the GNG-Q+ approach, each neuron is moved by ǫb in the di-

rection of the centroid of its regional states. Contrary to the GNG-Q

approach, the positions of a neuron’s topological neighbors (cf. Alg.

1, (4)) are not changed in order to increase the stability of the approx-

imation learned so far. Thus, in GNG-Q+ states visited in one region

only affect the center of this particular region.

Especially, we only move a neuron n if its associated error value

error(n) is larger than a small threshold ∆ (e.g. ∆ = 1). The inten-

tion is that we do not want to move a neuron, which is well positioned

and has a useful Q-vector. It is intuitive to consider the error of a neu-

ron for this purpose as this value is increased every time the policy in

its region changes. Thus, the performance of neurons with high error

values may increase by repositioning them whereas neurons whose

local policy has not changed often recently shall keep their position.

This behavior can be seen as parameter exploration as discussed e.g.

in [14].

As each region is only assigned one Q-vector for all its contained

states, it is important, that only compatible states are aggregated.

During the learning steps, the policy is monitored and every time, the

local policy in one region changes, the associated error is increased.

In [1], after each λinsert steps, the region of the neuron with the high-

est error is refined, unless a specific stopping condition is met.

In our approach, we refine the approximation after an episode, if∑
n∈Nt

error(n) > |Nt| holds and at least λinsert episodes have

passed since the last refinement. Thus, the refined approximation can

be adapted for some time and Q-vectors on the new approximation

can be learned accordingly. Of course, one could refine the approxi-

mation whenever the sum of all errors is larger than zero. However,

this might cause a too fine approximation, as sometimes a change in

the policy is inevitable. The motivation for the condition above is,

that on average each neuron is “allowed” to change its policy once

per episode.

The refinement is done by cloning the neuron ne with the highest

error and perturbate ne and the new neuron n+ by a small amount to

ensure that their initial positions differ slightly. The new neuron n+

is initialized with the Q-vector of ne and connected to the same topo-

logical neighbors. After this refinement, the error values of all neu-

rons are reset to zero, to reflect the fact that the abstraction function

ψ has changed. In GNG-Q+ the insertion ((3) in Alg. 1) is performed

after one episode.

The condition stated above implicitly provides a stopping crite-
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rion for adjustments of the abstracted state space: If the errors of

all neurons are small, this is evidence, that the overall policy has

not changed often since the last insertion and the current policy can

be expressed sufficiently with the current resolution. The GNG-Q

uses an external measure to decide, when the approximation is fine

enough, whereas GNG-Q+ uses the above criteria on the error to de-

cide when the approximation should be refined or moved.

As we change the number and the positions of the neurons over

time, we also change the abstraction function because ψ is defined

by the positions of the neurons and the used distance measure. Af-

ter moving the neurons, one state s may be abstracted by a different

neuron than before because it may now be in a different region. Ad-

ditionally, if a new neuron is added, the number of regions is changed

and thus, states may be in a different region after the refinement, too.

The refinement also changes the domain of the estimated Q-function

but the influence is rather low as the Q-vector in the two new regions

is the same as before. Dead regions that are deleted also change the

domain of Q̂ but this does not influence the approximation as these

regions were not visited for a long time.

4.5 Complete Algorithm

This section presents the complete algorithm of our approach (cf.

Alg. 2). To deal with different sized dimensions, it is useful to

scale the values of the states to be from the same interval. A com-

mon approach is to normalize a value x ∈ [xmin , xmax ] to a value

xscaled ∈ [xmin
scaled , x

max
scaled ] such that

xscaled =
x− xmin

xmax − xmin

· (xmax
scaled − x

min
scaled) + x

min
scaled .

Thus, the distance function employed in the nearest neighbor rule

weights all dimensions equally and no dimension will be favored just

because its values are from a larger scale. In our approach we used a

normalization to the interval [0, 1].

5 Evaluation

In this section, we experimentally evaluate the GNG-Q+ approach

and compare the results with those of other approaches from litera-

ture. At first, the different problem domains are described, followed

by a description of the evaluation setup and the default parameter set-

ting. Then GNG-Q+ and GNG-Q are compared in a 2-dimensional

continuous world. After that, GNG-Q+ and the Fourier approach [10]

are evaluated in a d-dimensional continuous world and GNG-Q+ is

used to solve the acrobot swing up control problem. We compare our

results in the acrobot domain to a baseline approach and additionally

to several approaches from literature.

5.1 Problem Domains

Here, we describe the two different problem domains that we chose

to evaluate the performance of GNG-Q+: The d-dimensional contin-

uous world is defined and the acrobot swing up problem from [16] is

introduced.

5.1.1 The d-Dimensional Continuous World

To test the performance of GNG-Q+ in higher dimensional spaces,

we use an extension of the continuous world employed in [1]: In the

d-dimensional continuous world the coordinates are from [0, 1]d ⊂
R

d and the agent has to learn the shortest path from all positions to

Algorithm 2: GNG-Q+

foreach episode do

initialize state s

initialize regional states Rn = ∅, ∀n ∈ N
initialize eligibility traces: e(n, a) = 0, ∀n ∈ N, ∀a ∈ A
while episode not finished do

/* interaction with environment */

observe current state st
determine nearest neuron n1 = nn(st) to current state

select and perform action at
observe subsequent state st+1

determine nearest neuron n′
1 = nn(st+1) to st+1

/* update neurons */

visits(n1, at)← visits(n1, at) + 1
store st in n1’s regional states: Rn1

← Rn1
∪ {st}

discount errors for all neurons

connect neurons n1, n
′
1

increase age of all neighborhood connections of n1

/* update Q̂ */

αt =
1

visits(n1,at)ω

δt = r − Q̂t(n1, at) + γmaxa′ Q̂t(n
′
1, a

′)
et+1(n, a)← et(n, a) + 1
foreach neuron n ∈ N do

foreach action a ∈ A do

Q̂t+1(n, a)← Q̂t(n, a) + αtδtet(n, a)

if at = argmaxa′ Q̂t(st, a
′) then

et+1(n, a)← γλet(n, a)
else

et+1(n, a)← 0

/* Monitor changes in policy */

if argmaxa Q̂t(n1, a) 6= argmaxa Q̂t+1(n1, a) then

increase error(n1)

/* Adaptation of approximation */

foreach neuron n ∈ N do

if error(n) > ∆ then

compute centroid sn of regional states for neuron n:

sn =
1

|Rn|

∑

sr∈Rn

sr

adaptation of neuron n to sn:

wn ← wn + ǫb · (sn − wn)

/* Refinement of approximation */

if
∑

n∈N
error(n) > |N | then

insert new neuron in most erroneous region

the goal located in sgoal := (1, 1, . . . , 1) ∈ R
d. The agent can per-

form actions a+i and a−i for each dimension 0 ≤ i < d that increase

or decrease the value of the i-th component by 0 < sstep ≤ 1, i.e. it

takes a step along dimension i. Thus, the agent’s action setA consists

of 2 · d actions and the state space is S = {(x, y) | x, y ∈ [0, 1]d}.

At the beginning of each episode, the agent is randomly placed in-

side the world and if it tries to leave the world in any dimension it is

positioned on the border of this dimension. To relax the goal condi-

tion, the goal is modeled as a hypercube with the edge length equal
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to sstep . For the action that leads the agent to the goal, a reward of 0
is awarded, for all other action, the reward is −1. Clearly, for d = 2
this environment reduces to the environment from [2] and Sec. 5.4.

5.1.2 The Acrobot Swing Up Control Problem

As additional environment we considerd the “acrobot swing up”

(sometimes called double pendulum swing up) control problem as

it is defined in [16].

The acrobot is a two-link under-actuated robot with the goal to

move the second link above a given height. The state space consists

of four continuous dimensions, namely the angles θ1, θ2 ∈ [−π, π]
and the corresponding angular velocities θ̇1 ∈ [−4π, 4π] and θ̇2 ∈
[−9π, 9π]. A sample state is shown in Fig. 2. The lengths of the

θ1

l1

θ2 l2

apply torque here

tip

Figure 2. The acrobot from [16].

links (l1 = l2 = 1), their masses (m1 = m2 = 1), the gravity

(g = 9.8), the goal height (h = 1) and the torque applied to the link

are parameters that we chose in accordance to [16]. The behavior of

the acrobot is calculated via formulas which can be found in [16],

too. For our experiments we used a library1 and adjusted it such that

it fits the dynamics in [16].

5.2 Experimental Setup

In all experiments, one setting with a specific method and a fixed

setup was simulated 100 times with different random seeds and av-

eraged afterwards. Furthermore, the reward for the agent is always

the same. If the agent reaches the goal state, it receives a reward of

0 and −1 in every other step. In each experiment, we initialized the

Q-tables with zero for every state-action pair.

We divided the evaluation in a learning and a test-phase. In the

learning phase we used an ε-greedy approach and learned for 10

episodes. In the following test phase, we tested the learned policy

for 250 episodes in which the agent always chose the action with

the highest Q-value. If the agent did not reach the goal after a fixed

number of steps, this test-episode was stopped. During the evaluation

phase, the agent was not allowed to learn.

For all our experiments in the continuous worlds, we chose the

step size of the agent as sstep = 0.05 and the maximal number of

trials in one episode as
(

1
sstep

)d

. In the acrobot domain, we allowed

the agent a maximal number of 5000 steps to learn and the evaluation

was finished if either the goal was reached or 3000 steps have passed.

5.3 Parameter Values for Our Approach

To define useful basis values for our approach, we evaluated GNG-

Q+ for several parameter values on the 2-dimensional continuous

world. In contrast to the other experiments, we only report on aver-

ages of 30 runs.

1 http://library.rl-community.org

For the exploration strategy we used ε-greedy and experimented

with ε ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4} and obtained the best

results for ε ∈ {0.01, 0.05} with ε = 0.01 being slightly better

for all settings. The strengths of the adaptation towards the cen-

troid of the regional states were chosen from {0.01, 0.025, 0.05}
and ǫb = 0.05 performed best. We experimented with several expo-

nents for the learning rate and chose ω ∈ {0.51, 0.55, 0.6, 0.65, 0.7}
from which ω ∈ {0.55, 0.6, 0.65} performed best. As example,

we investigated the influence of the number of episodes λinsert be-

tween two refinements of the approximation and chose λinsert ∈
{10, 20, 30, 40, 50}. The results are plotted in Fig. 3(a) and it can be

seen, that λinsert ∈ {30, 40, 50} performs best while smaller values

result in slower convergence. Note that after around 2000 episodes,

all graphs reach their minimal values.

Based on theses experiments, we chose the following basic values

for GNG-Q+ (variations are mentioned correspondingly):

• decay factor for eligibility traces λ = 0.9
• number of episodes between two insertions λinsert = 40
• maximal age of neighbor connections agemax = 300
• discount factor γ = 0.9
• exploration probability ε = 0.01
• exponent for the time dependent learning rate ω = 0.55
• adaptation strength ǫb = 0.05
• error decay β = 0.9999

5.4 Comparison between GNG-Q and GNG-Q+

For the comparison of GNG-Q and GNG-Q+ we employed the same

scenario and the same parameter values as in [1] and thus, we used

exploration rate ε = 0.05 and discount factor γ = 0.95 for both

approaches, learning rate α = 0.1, ǫb = 0.05, ǫn = 0.0006 and

λinsert = 1000 for GNG-Q. For the new approach, we used λinsert =
40, ǫb = 0.05 and for the eligibility traces λ = 0.9.

As we can see from Fig. 4, GNG-Q finds a good policy slightly

faster in the beginning. After around 1000 episodes, GNG-Q+ is as

good as GNG-Q and remains more stable without high peeks, which

can be seen in the zoomed section. Additionally, GNG-Q+ needs less

neurons than GNG-Q to represent the learned policy. Fig. 5 shows

the number of neurons needed to represent the learned policy for

which the number steps are shown in Fig. 4. GNG-Q+ does not need

more than 20 neurons on average with their number remaining stable

whereas GNG-Q needs more than 100 neurons after 10000 episodes

without stabilization of the number of neurons. Obviously, learning

with GNG-Q+ compared to GNG-Q results in a better policy while

less neurons and thus less memory is needed.

Fig. 6 shows the approximation computed by one arbitrary run

of GNG-Q. It can be seen in the left part, that the state regions are

rather small and that the density of regions increases towards the

goal. Although the policy (depicted in the right part of the figure) in

combination with the computed approximation leads to an optimal

behavior, the right part of this figure shows, that there are many re-

dundant regions, e.g. all neighboring regions that point in the same

direction. In Fig. 7(a), the state space approximation computed by

one run of GNG-Q+ together with the learned policy is shown. This

result is clearly better than the one in Fig. 6 as the learned behavior

for both approximation is identical but the approximation computed

by GNG-Q+ is much smaller.

Of course, the size of an approximation is not the only metric that

has to be considered. However, for equal performances, a smaller

approximation in number of states is definitely better than a larger

one as this saves computing time and memory.
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Figure 3. Average number of steps to reach the goal (a) and average number of neurons (b) with different values for λinsert using GNG-Q+.
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Figure 6. Approximation computed by one run of GNG-Q. The left part shows the abstracted state space and the right part depicts the learned policy for the

dashed area.
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Figure 4. Average number of steps with GNG-Q and GNG-Q+ in the sce-

nario from [1].

For the GNG-Q+ approach, we investigated the distribution of the

neurons in the 2-dimensional continuous world. For this, we col-

lected the positions of all neurons from all evaluations and plot-

ted them into the environment. The heat map in Fig. 7(b) gives an

overview of the average distribution of the neurons: The opacity in-

dicates the relation of number of neurons in this tile to the maximal
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Figure 5. Size of the approximation in number of needed neurons with

GNG-Q and GNG-Q+ in the same scenario as in Fig. 4.

number of neurons over all tiles (“the darker the tile, the more neu-

rons fell into this particular tile”).

We can see that the density of neurons increases towards the goal

and that no neurons are positioned near x = 0 or y = 0. This stems

from the fact, that the neurons are moved towards the centroid of all

positions visited in the respective region. The distribution of neurons
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Figure 7. Exemplary state space with 8 states computed by one arbitrary run of GNG-Q+ in (a) and heat map showing the density of average positions of all

neurons from all evaluations in the 2-dimensional continuous world in (b).

in the old GNG-Q approach is similar but in GNG-Q+, the number

of neurons is drastically reduced (compare Fig. 5).

5.5 Experiments in Multidimensional Spaces

In this section we investigate the performance of GNG-Q+ in two

multi-dimensional environments and compare our results to ap-

proaches from literature.

5.5.1 The d-Dimensional Continuous World

Fig. 8 shows the comparison of GNG-Q+ and the Fourier approach

from [10] in a 3-dimensional continuous world with six actions. The

parameters for the Fourier approach are taken from [10] for a similar

environment called the “Discontinuous Room” (Fourier order = 5;

λ = 0.9; α = 0.001; γ = 0.9; ǫ = 0). For the first 1000 episodes

the Fourier approach outperforms GNG-Q+. After that GNG-Q+ re-

mains more stable than the Fourier approach and needs less steps to

reach the goal. Note that the implementation of the Fourier approach

we used2 was about 10-times slower than GNG-Q+ (regarding com-

putation time).

5.5.2 The Acrobot Swing Up Control Problem

We evaluated the performance of the acrobot for torque ∈ {1, 2, 5}
with our GNG-Q+ approach and started from a down-hanging posi-

tion, i.e. θ1 = θ2 = θ̇1 = θ̇2 = 0.

Fig. 9 shows the learning curves for the average number of steps

for torque ∈ {1, 2, 5}. We can see that it takes about 12000 episodes

to find a good policy for torque = 1. For torque ∈ {2, 5}, the learn-

ing curve does not improve significantly after 5000 episodes. After

40000 episodes the policies found by GNG-Q+result in about 118

steps for torque = 1, 34 steps for torque = 2 and 17 steps for torque

= 5 on average.

Fig. 10 shows the number of needed neurons for torque ∈
{1, 2, 5}. After 40000 episodes GNG-Q+ uses around 60 neurons

on average to approximate the state space for torque = 1, 30 neurons

2 http://library.rl-community.org/wiki/Sarsa Lambda Fourier Basis (Java)
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Figure 8. Average number of steps with GNG-Q+ and Fourier based ap-

proach from [10] in a 3-dimensional continuous world.

for torque = 2 and 20 neurons for torque = 5. It seems that GNG-Q+

would have inserted more neurons without an obvious benefit if the

learning proceeded e.g. caused by exploration. As seen in Fig. 9 the

policies for torque ∈ {2, 5} do not improve after 5000 episodes but

still, new neurons are inserted. This fact will be investigated in further

research. Nevertheless, GNG-Q+ can represent the four-dimensional

state space of the acrobot problem in a very compact way with only

60 neurons on average for the hardest task.

For comparison, we employed the following baseline algorithm:

We use Q-Learning on a predefined uniform discretization with a

similar state space size as computed by GNG-Q+ at convergence.

Without any knowledge on the problem at hand, it is advisable to

use the same resolution for each dimension. Of course, this may not

be optimal as some dimensions might require a finer resolution than

others. As the GNG-Q+ approach needs approx. 61.2 neurons for

torque=1, approx. 30 neurons for torque=2, and approx. 18.2 neu-

rons for torque=5, we decided to split each dimension in 3 equal

portions and thus the resulting state space has 34 = 81 states. We

also ran experiments for larger state spaces where the performance

of this baseline approach improved but still was not satisfying. Nev-

ertheless, this experiment should only serve as a rough comparison.

Fig. 11 shows the learning curves of the baseline approach for the
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Figure 9. Comparison of the average number of steps for GNG-Q+ in the

acrobot domain with torque ∈ {1, 2, 5}.
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Figure 10. Comparison of the approximation size in numbers of neurons

for GNG-Q+ in the acrobot domain with torque ∈ {1, 2, 5}.

average number of steps with torque ∈ {1, 2, 5}. The learning curve

for torque = 1 oscillates heavily, but the oscillation decreases with

increasing torque. Table 1 shows the comparison in terms of mean

values (µ) and standard deviation (σ) of GNG-Q+ and the baseline

approach for the last 5000 episodes. The values correspond to the

learning curves from Fig. 9 and 11. Except for torque = 5, GNG-

Q+ outperforms the baseline approach considering the average num-

ber of steps needed to reach the goal by a factor of at least two.

As already seen in Figs. 9 and 11 the learning curves of the base-

line approach oscillate more than GNG-Q+ which results in a higher

standard deviation. For torque = 5 the baseline approach is slightly

better than GNG-Q+ on average over the last 5000 episodes, but the

baseline approach needs approx. 15000 episodes to learn the good

policy while GNG-Q+ needs only 1000 episodes. Hence, GNG-Q+

performs better than the baseline approach in most cases while need-

ing less states. It seems that GNG-Q+ places more neurons where

a high density is necessary and only few neurons where a coarser

resolution suffices.

Table 1. Comparison (mean value µ and standard deviation σ) of GNG-Q+

and the baseline approach over the last 5000 episodes with torque ∈ {1, 2, 5}.

GNG-Q+ Baseline

Torque µ σ µ σ

1 117.69 16.53 465.55 809.3

2 33.18 5.98 79.62 31.81

5 16.17 2.66 15.25 5.16
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Figure 11. Comparison of the average number of steps for the baseline ap-

proach in the acrobot domain with torque ∈ {1, 2, 5}.

We also compared our results to others found in literature but

it was not always possible to obtain precise values for the perfor-

mance3. Furthermore, it was sometimes unclear which parameters

values were used in the presented experiments. The GNG-Q+ ap-

proach needs on average about 118 steps to reach the goal state from

a down-hanging position. Always starting from that position the best

policy found by GNG-Q+ results in 72 steps. The policy found in

[10] needs around 100 steps to reach the goal. Unfortunately, the start

position and the torque applied are not mentioned for these experi-

ments. The method described in [5] needs about 250 steps from the

down-hanging position with torque = 1 whereas [3] needs at least

87 steps for the same setting. In [16], their CMAC approach needed

around 85–90 steps.

5.6 Conclusion of Evaluation

In this section we compared GNG-Q+ with GNG-Q, the Fourier

approach, a baseline approach and other approaches from litera-

ture. The changes made to improve GNG-Q to GNG-Q+ increased

the performance regarding stabilization and needed neurons. Then

we showed that GNG-Q+ needs less steps at convergence than the

Fourier approach. After that we investigated the difference between

GNG-Q+ and a baseline approach, resulting in more stable and in

most cases better performance of GNG-Q+. Finally, we presented

results from comparable approaches.

6 Conclusion & Future Work

In this paper, we analyzed GNG-Q, an approach that uses a com-

bination of Q-Learning and growing neural gas to learn a policy in

parallel with a state space abstraction and proposed GNG-Q+ that

improves the former approach. The use of a non-deterministic Q-

update, the incorporation of eligibility traces and the formulation of

criteria for adjustments of the state space clearly improved the perfor-

mance. Our evaluation showed that GNG-Q+ is capable of learning

compact state space representations in parallel with a (nearly) op-

timal policy in several continuous reinforcement learning problems

with up to four dimensions and eight actions. Its performance is well

competitive with other approaches from literature without the need of

knowing the considered reinforcement learning problem beforehand.

For the future, we plan to incorporate a merging strategy to deal

with the fact that Q-vectors of neighboring state regions may become

3 We are aware that the actual results for the mentioned literature may be
better than reported here and we do not want to discredit them. The values
here should only show that our approach is comparable to existing methods.
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similar during learning. The next step is to theoretically investigate

the adapted method and to analyze convergence and optimality ques-

tions. Additionally, we will investigate how the number of neurons

may be bounded further to avoid the increase caused e.g. by taking

exploratory actions. Furthermore, the approach will be employed in

the multi-agent reinforcement learning context. There, it will be in-

vestigated, how the proposed approach can deal with partial observ-

ability.
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Realizing Target-Directed Throwing With a Real Robot
Using Machine Learning Techniques

Malte Wirkus1 and José de Gea Fernández2 and Yohannes Kassahun3

Abstract. This paper presents a practical application of machine

learning techniques in real-world robotics. Our goal was to make a

anthropomorphic robot throw a ball into a bin that is placed at an

arbitrary position in front of the robot. We use evolutionary machine

learning to optimize a cost function based on a simulation model to

aim at the target and generate the necessary motion to throw the ball

at the position that is estimated by the simulation model. In order to

compensate for the error in the simulation model, we trained an arti-

ficial neural network based on data from real-world task executions.

We show that a simple simulation model can already result in good

throwing performance if machine learning is applied to compensate

for the resulting simulation error.

1 Introduction

When machine learning is applied to robotic manipulation tasks, a

common approach is to perform learning in a simulation environ-

ment. The simulation models can be very different in terms of com-

plexity and accuracy in modeling real world behavior, ranging from

very reduced models to very complex dynamic simulations. Espe-

cially for simpler models, but also for the more complex ones, it

comes to problems when learned tasks are transferred to the real

robot. These occur from restrictions of the real-world robot hardware

that have not been considered in the simulation, or from inaccuracies

that results from imprecise modeling of the robot, the task, physical

phenomena and so on. Building a perfect simulation in a way that a

seaming less transfer to a real robot is possible is very difficult and

hardly possible for complex tasks that for example include dynamic

interaction with the environment.

Different approaches to improve the transfer from simulation to

the real system are given in literature. In [8] this problem is ap-

proached by constraining the search space to regions where the sim-

ulation is more likely to be correct. To realize this it is proposed to

define a metric for the similarity of behaviors to compare simula-

tion with real-world performance. An estimation of the likeliness for

a successful transfer of a simulated to a real-world behavior is de-

rived from this. An evolutionary algorithm is then used to optimizes

multiple objectives that on the one hand optimize the primary target

function in simulation, and on the other hand prefers solutions that

are expected to perform well on the real system.

In [2], a forward model is learned that maps motor commands of

a controller to expected sensor data (e.g. a compass) in simulation.

1 Robotics Innovation Center, DFKI Bremen, Germany, email:
Malte.Wirkus@dfki.de

2 Robotics Innovation Center, DFKI Bremen, Germany, email:
Jose.de Gea Fernandez@dfki.de

3 Universität Bremen, Germany, email: Kassahun@informatik.uni-
bremen.de

Figure 1. We used the robotic platform AILA in our experiments. This
image sequence shows the execution of the throwing task.

During real-world execution, a simulation error is composed based

on the forward model and actual sensor data. A correction function

that modifies the behavior is then learned online to compensate for

the simulation error.

In [3] walking optimization of a small two-legged robot was per-

formed with no external simulation environment, instead a surrogate

optimization scheme is used. By performing real-world experiments,

data is collected to learn a smooth surrogate function that is used

as a replacement for a simulation environment. Simultaneously the

current estimation of the surrogate function is used to optimize the

main objective (walking distance) in order to generate a new parame-

ter set to be evaluated on the robot hardware. Although the surrogate

function is not able to approximate the real-world performance of the

robot appropriate on the whole domain, the number of experiments

to be performed is rather low (≈ 50) to learn a good performing gait.

On the control area, learning strategies have been long using neu-

ral networks to implement dynamic controllers. At first they were

used for learning the whole inverse dynamic model of the robot

which was found later on to be too complex. Therefore, the use

of neural networks was in recent years mainly to support an adap-

tive control scheme rather than trying to approximate the whole in-

verse dynamics. That is, there is available a certain inaccurate inverse

model which is used by the main dynamic controller and the learn-

ing strategy utilizes neural networks to compensate for inaccuracies

or unforeseen changes of that dynamic model [5], an idea we adopt in
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our work in order to compensate for an imprecise simulation model.

In this paper we validate this approach on the problem of mak-

ing a real robot throw a ball into a bin that is placed at an arbi-

trary position in a bounded area in front of the robot. An incomplete

physical formulation simulates the problem of predicting how far a

ball, placed in the hand of the anthropomorphic robot (see Figure

1), would be thrown, when executing a trajectory. A cost function

is designed and minimized using an evolutionary learning technique

to find trajectories and joint configurations to throw the ball at the

desired target. Shortcomings in the simulation are compensated by

supervised training of an artificial neural network in order to enable

for real world application which is also trained using evolutionary

learning. To increase stability of the approach a library of parameter

presets for the initialization of the function minimization algorithm

is used. An overview of the framework is given in Figure 2.
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Figure 2. The proposed learning framework.

The ball throwing is performed on a human-scaled anthropomor-

phic robot, equipped with a five-fingered tendon driven hand which

is used to hold the ball and release it while performing the throw

movement. The given task is challenging and difficult to simulate

precisely. Beside an accurate calibration of the robots kinematics and

description of the dynamics of its movements, also the dynamic inter-

action between the ball and the multi-fingered, inherently compliant

hand must be modeled to fully describe the simulation physically.

We show that an incomplete simulation in terms of accuracy of the

modeled quantities and the fact that there are unmodeled dynamic

phenomena can already lead to good results. The inaccuracies of the

simulation can be compensated by a function that maps the simula-

tion results to corrected values, so that the task can be successfully

fulfilled on real robot hardware.

In Section 2 we show how the robot’s throw movements are repre-

sented. This forms the Simulation or Forward Model (Section 3) that

is used to estimate the expected position where the ball will land.

To find the proper movement to throw the ball at an arbitrary target,

we formulate a parameter optimization problem that is described in

Section 4. In Section 5 we discuss the shortcomings of the forward

model and introduce a simple method to overcome these. We apply a

correction function that was learned using supervised learning using

data collected from multiple throw performances. We made a num-

ber of experiments in order to investigate the problem we are dealing

with on the robot, collected training data and evaluated the results

from learning the simulation error compensation function. In Section

7 we present these experiments along with their result. A discussion

of the results and concluding comments are given in Section 8.

2 Throw configuration

To be able to throw the ball to arbitrary positions, we need the pos-

sibility for a computer program to modify the movements the robot

should execute. A parametric description of movements provides this

possibility and will be discussed in this section. While in Section 4,

we will go more into detail on the modification of the throw param-

eters, here we only want to state that for parameter optimization the

number of adjustable parameters plays a crucial role in the optimiza-

tion performance. For this reason we where looking for a compact

parametric representation of joint movement. Also, the joint move-

ment should satisfy some criteria:

• The trajectory is bounded within defined joint limits.

• It should be smooth and non-oscillating.

• It should start and end with zero velocity.

To keep the number of parameters in a reasonable size, we decided

to distinguish between joints that move (active joints) and joint that

keep their position during the throw but are still used for aiming (in-

active joints). The combination of both build the set of adjustable

parameters to make the robot throw at different targets. We call this

set of parameters throw configuration.

As a representation for joint movements we adopted a concept

from the computer graphics community, the Bézier curve that is used

to encode a sequence of joint angles. A Bézier curve

q(u) =

n−1
∑

i=0

piBi(u) (1)

is described in terms of a parameter u, that varies in the interval

of 0 to 1. The parameter is used to blend a set of control points

pi = [pi, ti], i ∈ Z|0 ≤ i < n by evaluating n basis functions B

dependent on u.

The basis functions are the Bernstein polynomials, a set functions

that are all always positive and together add up to 1 at each point in

the interval of u. The resultant curve is a spline of degree n−1. Using

fifth degree Bernstein polynomials as we do in this paper, Equation

1 can be written as

q(u) = [p0 p1 p2 p3 p4 p5]

















(1− u)5

5u(1− u)4

10u2(1− u)3

10u3(1− u)2

5u4(1− u)
u5

















= P · b (2)

The resulting curve starts at p0, ends in p5 and is always enclosed

within the convex hull of the control polygon that is spanned be-

tween the control points, so no strong oscillations occur. By con-

straining the p-coordinate of the control points to the operating range

of the corresponding joint, it is ensured that the trajectory is within

the boundaries of the joint limits.

It can be shown that the first derivative at the first and last control

point is given by

q̇(0) = n ∗ (p1 − p0) (3)

and

q̇(1) = n ∗ (pn−2 − pn−1). (4)
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To ensure zero velocity at the start and end of the trajectory we set

p0 = p1, pn−2 = pn−1, t0 6= t1 and tn−2 6= tn−1 [10]. An example

trajectory is shown in Figure 3.
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Figure 3. Joint trajectories are modeled as Bézier curves. By modifying the
placement of the control points P the curve changes. The control polygon is

shows as plotted line. Also joint velocity and acceleration are shown.

It is worth to mention that the parameter for the basis functions

u lies within the range but is not equal to t. To sample the curve in

discrete steps along the t-axis (which represents a scaled time axis),

we sample q̇(u) with a rate 4 times higher than the desired control

frequency for the trajectory and linearly interpolate for the actual

time steps.

3 Simulation / Forward Model

For our ball throwing task it is relevant, how the joint movements of

the robot influence the movement of the ball, or stated differently:

Given a throw configuration, where will the ball hit the ground. Ac-

tually, for throwing inside the bin we need to know when the ball

passes a specified height, which is the height of the bin. We call a

function that provides this information the forward model.

For a precise simulation, there are factors involved that are diffi-

cult to model. It starts with the question how the robot will be able

to follow the joint space trajectories, which is dependent on the low-

level controllers and mechanical parts like the motor, gears and so on.

Also dynamic properties of each link have to be modeled if you want

to be precise. In our case, the ball is held by the robot in a robotic

hand. Here dynamic properties, involving the friction between hand

and ball, as well as the exact shape of the fingers, should be consid-

ered. We decided not to try to provide a physical model that is very

precise, but rather to use one that captures only the most relevant

properties.
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Figure 4. The Simulation / Forward model.

For the prediction where the ball will land we are especially inter-

ested in the movement of the robotic hand through space (task space

trajectory) as the result from the throw configuration. Evaluating the

task space trajectory then leads to an estimation of the ball trajectory

in an ideal way. Figure 4 shows an overview about our forward model

and will be explained in the following paragraphs.

The throw configuration contains fixed joint positions together

with joint trajectory parameters that can be evaluated to joint space

trajectories using Equation (2). That means all information from a

throw configuration can be represented as a temporal sequence of

joint configurations, when the fixed joint positions are considered as

a trajectory of zero velocity. The task space trajectory results from the

joint movements and the kinematic structure that connects the joint.

The kinematic structure of the robot can for example be represented

using the well-known Denavit-Hartenberg convention. Calculation of

the forward kinematics (given the joint configuration at a particular

time point) leads to the determination of the configuration of the end

effector at this time. By repeating this for every sample from the joint

trajectories we get the task space trajectory.

During the execution of the throw movement (i.e. the task space

trajectory) we need to release the ball. The moment where the ball

gets released should be well timed, so that it results in a nice tra-

jectory of the ball through the air. The trajectory of the ball can be

calculated using equations for projectile motion as shown in Equa-

tion (5). They depend on the initial velocity of the projectile (in our

case the ball, which we assume has the velocity of the end-effector

in direction of hand aperture) ṗ0 = [ẋ0 ẏ0 ż0], the gravity g, and

the displacement from the origin frame at the moment of launch

p0 = [x0 y0 z0]. The origin frame R is placed centered to the robot

on the ground (see Figure 5(b)).

x(t) = x0 + ẋ0t

y(t) = y0 + ẏ0t

z(t) = z0 + ż0t− 0.5gt2 (5)

We are interested in the point where the ball passes a specified

height h (the height of the bin). So we modify the last term from

Equation (5) to include the height of the bin and solve the resulting

quadratic equation for t

0 = z0 − h+ ż0t− 0.5gt2

tpred =
(
√

2gz0 + ż20 − 2gh− ż0)

g
. (6)
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Now that we have the time of flight tpred, we can insert the value

in Equation (5) to calculate the predicted ball landing position

qpred =

[

x(tpred)
y(tpred)

]

. (7)

To determine the end-effector velocity at each time point, we dif-

ferentiate the task space trajectory with respect to time. We look for

the point in the end-effector trajectory that has the highest velocity

and use this for estimating where the ball will land using the Equa-

tions (6) and (7). The ball can leave the hand only in direction of

the hand aperture, so the velocity along this vector is considered. In

Figure 5(a) and 5(b) screenshots of a visualization of the simulation

model are given.

(a) Side view (b) Back view

Figure 5. Two screenshots taken from the simulation for the same throw
configuration from different views. The kinematic model is shown as black
lines. The projectile trajectory is the dashed line. The end-effector trajectory
is shown in thick black curve. We superimposed some of the quantities from

the Equations (5 - 7).

It is clear that using this formulation alone as forward model will

deliver faulty predictions. But in this paper we claim that an incom-

plete simulation can already be good enough to accomplish tasks in

real world, if the error in the simulation is compensated as we will

describe in Section 5.

4 Parameter optimization

In Section 2 we described how movement of the robot is modeled and

in Section 3 how an estimation for the resulting ball landing position

is calculated given a throw configuration. A throw configuration is a

set of adjustable parameters and varying these will result in a differ-

ent throw movement in terms of dynamics, position and orientation

of the hand in task space. This finally results in a different estimated

landing position of the ball. Modifying the values in the parametric

description allows to aim for different targets to throw at.

Summarized the adjustable parameters c from a throw configura-

tion are:

• The start and end position of each active joint represented by p0
and p5 (cf. Figure 3 and Equation (2)).

• The 2D-positions of the inner control points p1, . . . , p4 for each

active joint trajectory (also Equation (2)).

• The time for each active joint trajectory, which is the factor we

scale the t axis from Figure 3 with.

• The angles of the inactive joints.

The problem to solve is to find the set of parameters, for which the

result from the forward model corresponds to a given target position.

We formulate this as a parameter optimization problem

argmin
c

f(c). (8)

The predicted ball landing position is given by Equation (7) of

the forward model described in Section 3, which is a function g(c)
dependent on the throw configuration. To describe the quality of one

particular throw configuration, we measure the squared Euclidean

distance from the target d:

fpos(c) = ‖g(c)− d‖2 . (9)

Working on actual hardware we need to generate feasible trajec-

tories that are executable on the robot. This requirement constraints

the joint limits and the maximum velocity per joint, that is limited by

the dynamic properties of the robot, its actuators and the low-level

controllers. Also we want to enforce a principle characteristic in the

throw movement, i.e. we have an acceleration and deceleration phase

in the end-effector movement. By constraining the position of the in-

ner control points of the joint space trajectory parameters this can be

achieved. To induce these constraints k, we formulate the objective

function from Equation (8) as

f(c) = fpos(c) + fpenalty(c,k, α), (10)

where fpenalty(c,k, α) calculates the absolute distance of each

parameter value to the nearest boundary of the valid range if it ex-

ceeds it. For each parameter the constraint violation is weighted by a

corresponding factor from the weight vector α.

From the different methods to choose for parameter optimization,

we decided to use Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [1]. This method allows for minimization of non-linear

functions without the need of a derivative. The algorithm already

showed very good results in many different problem domains4.

5 Simulation error compensation

Due to our rather simple simulation model, the estimation of the

throwing distance lacks precision. For example, the point on the tra-

jectory where the ball leaves the hand and the direction are only

rough estimations. Friction between the ball and the robotic hand

or collisions of the ball with the fingers is not considered at all. Also

the kinematic model of the robot is not precisely calibrated and the

response behavior of the low-level controllers is not modeled in the

simulation.

A classical way would be to try to improve the simulation to model

all involved phenomena using physical equations and to establish a

complete dynamic simulation of the problem. The resulting software

would be much more complex and slower, and also the success of this

approach can be questioned, since most simulation software show a

discrepancy as compared to real-world system it simulates [6]. In-

stead we decided to accept that the simulation is not perfect but gives

an estimation that only reflects the most important characteristics of

the problem.

We wanted to overcome these shortcomings by means of super-

vised machine learning and decided to train a feed-forward neural

network that acts as an error compensation function. As depicted in

Figure 6, the neural network maps from the predicted position by

4 A list of applications of the algorithm can be found on the website of the
author of CMA-ES (http://www.lri.fr/ hansen/cmaesintro.html)
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the forward model to a corrected position and was trained on data

collected in real world experiments (see Section 7 for a detailed de-

scription of the experiments).

We used a feed-forward artificial neural network with one hidden

layer that consists of 5 nodes activated by tanh functions. The two

output nodes are also implemented using tanh activation functions.
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Figure 6. Simulation Error Compensation: A feed-forward artificial neural
network is used to correct the simulation error.

Learning is performed using the RPROP algorithm [9] to minimize

the mean square error of the output of the network activated by the

predicted ball landing position from Equation (10) to the measured

throwing distances m = [mx my]:

argmin
x

1

2k

k−1
∑

i=0

(

n(q
(i)
pred,x)x −m

(i)
x

)2

+
(

n(q
(i)
pred,x)y −m

(i)
y

)2

(11)

Here, n(q
(i)
pred, x)x,y denotes the activation level of the two out-

put nodes of the artifical neural network as a function of the estimated

throw position for the ith out of k samples, given the weight vector

x. As a result the corrected estimation is now given by

qcorr = n(qpred,xmin), (12)

where xmin are the weights for the neural network obtained from

training.

6 Template library

Our simulation error compensation function maps from expected ball

landing positions to corrected ones. This approach completely ne-

glects special characteristics in the resulting ball trajectory due to

distinct parameter constellations in the throw configurations. So the

correction function is likely to work only for throw configurations

that are very similar to each other.

To improve the results, we decided to not strictly use one source

configuration as initial parameter set for the generation of new throw

configurations, but created a database from the training data. We then

used the configuration that results in the closest ball landing position

to the given target (determined by nearest neighbor search) as initial

parameter set.

We expected to increase the performance of the algorithm by pro-

viding template throw configurations. But it is clear that it does not

really solve the problem which arises from the fact that different

throw configurations with the same target estimated by the forward

model, might actually result in different ball landing positions.

7 Experiments and Results

7.1 Initial tests of the robot hardware

As robotic platform to implement the framework, we use a human

scaled mobile dual-arm robot named AILA (shown in Figure 1). It

consists of a complete anthropomorphic upper body mounted on a

mobile platform. The upper body consists of two arms, each of them

with seven degrees of freedom, a torso with four joints, and a head

with two degrees of freedom. Each torso and arm joint is equipped

with position and velocity sensors. To the right arm a five fingered

hand is mounted. The hand is underactuated which means that several

of the 19 joints are coupled and only actuated by one motor. In total

there are 9 active degrees of freedom for the hand. The design of the

hand makes it in parts inherently compliant. The head of the robot is

equipped with two cameras.

The task requires the robot hand to grasp and hold the ball and re-

lease it during the trajectory after accelerating at the time of highest

task space velocity. We use predefined hold and release configura-

tions that are position controlled by a PID-controller. To synchronize

the hand and body movements, we determined the time for changing

from the hold to the release configuration empirically.
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Figure 7. (a) Difference in opening time of the hand over multiple
repetitions. (b) Resulting ball landing position after execution of the same

trajectory multiple times. Each symbol represents a different trajectory.

Beside other factors like the capabilities of the low-level con-

trollers in the body and arms of the robot to follow a given trajec-

tory in a similar way over multiple repetitions, the repeatability of

the hand opening movement was identified as an important factor to

influence the overall ball throwing performance. To evaluate this, we

brought the hand into an open configuration, placed the ball and set

the hold configuration as reference for the position controllers of the

hand joints. Now we set the release configuration as reference and

measured the time until the movement is completed using software

timers. This was performed 50 times (see Figure 7 (a)). The mean
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time needed for the trajectory was 0.357s with a standard deviation

in the opening time is 0.014s.

Together with unmodeled dynamics inside the system, the repeata-

bility of complete throw performances, measured as the mean stan-

dard deviation in the ball landing position is 0.08m. This was found

out by performing the resulting trajectory from one throw configura-

tion multiple times. For each trial the position where the ball landed

was marked and measured. This resulted in the distributions as shown

in Figure 7 (b).

7.2 Visual detection

In this work we did not focus on computer vision algorithms, but

found using the measuring tape cumbersome. A simple method to

detect the bin visually and estimate its position using the camera in

the head of the robot was implemented. We detect the bin by finding

and filtering blobs (according to size and position constrains) that

result from the difference of the current camera image to a reference

image taken earlier in an initialization step. For the reconstruction of

the position of the bin we search for the pixel in the detected blob that

has the highest y-value, since this is a relatively strong feature that in

most poses corresponds to the same point on the rotational invariant

bin (eg. the centre point of the frontal arc of the bins bottom). The

resulting image coordinates point is reprojected into 3D space and

the intersection with a virtual ground plane is calculated that was

determined for a fixed pose of the torso and head in a calibration

procedure.

In the next sections we will evaluate the overall performance of

the system while using the vision system.

7.3 Training the error compensation function

To train the compensation function, first we designed a exemplary

throw configuration (source configuration). We defined an operating

range (the range of possible targets) of 1-2.5m to the front of the

robot and 1m to the left and right. The throwing distance of the source

configuration was approximately 2m straight to the front. This source

configuration defines the initial parameter set for the parameter opti-

mization that is performed in order to generate a throw configuration

for a new target as described in Section 4).

Now, we randomly defined new targets near the predicted distance

of the source throw configuration and generated new throw config-

urations for these targets. We performed the throws for each target

several times to find good optimal position to place the bin for this

throw configuration. Finally we took the distance for the bin position

using the computer vision system. In total data from 17 throws has

been collected for training.

To train the feed forward neural network described in Section 5,

each weight in the neural network was initialized with a small ran-

dom value. Using the normalized predicted distances as input and the

also normalized measurements from the vision system as reference

output, after approximately 500 iterations of RPROP5 we stopped

optimization. Figure 8 shows the training data for the error com-

pensation function (bigger arrows) as well as the correction function

sampled in discrete steps. Here we can see that the internal model, as

expected, gives a rather high deviance from the measured distances

of 0.388m (RMS error) what implies the necessity of the correction

function since with such a prediction error it’s very unlikely to hit the

target. Using the neural network the error is reduced a lot to 0.088m.

5 For training we used the implementation given by the FANN library:
http://leenissen.dk/fann/wp/
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Figure 8. The learned correction function. The tail of the arrows show the
predicted position qpred. The direction points towards the corrected position

qcorr with the color encoding the magnitude of qcorr − qpred.

Running the RPROP algorithm for more iterations could further

decrease the error, but leads to overfitting to the few data points avail-

able what decreases the overall performance which is evaluated be-

low.

7.4 Overall performance evaluation

For evaluating the overall performance, we placed the bin at 5 ran-

dom positions inside the operating range. The position of the bin was

measured using the vision system and for the resulting coordinates a

throw configuration was generated with the error compensation en-

abled. Each throw was then performed 10 times. For every throw it

was counted whether the ball landed inside the bin or missed it. Ta-

ble 1 shows the results of this experiment, resulting in a final success

rate of 0.46. The bin that was used in this experiment was cylinder

shaped and has a height of 34cm and a diameter of 28cm.

Target 1 2 3 4 5

Success 7 6 1 4 6
Fail 4 4 9 6 4

Success rate 0.64 0.6 0.1 0.4 0.6
Avg. success rate 0.46

Table 1. Evaluation of the overall performance. First, the bin was detected
visually. A throw configuration was generated afterwards and executed

multiple times. This was done for five different bin positions. Success is the
number that indicates how often the ball landed inside the basked and fail the

number how often it missed.

Table 1 shows a summary of the experiment. The success rate

( Success
Fail+Success

) shown there is influenced by the repeatability of ex-

ecuting one particular throw configuration similarly (cf. Section 7

and Figure 7(b)) together with the position error due to the visual bin

detection and errors in the simulation error compensation. We can

see in Table 1, that for target 3, there was only one successful throw

out of 10 trials, what is an indication that the at this point the error

compensation failed.
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8 Conclusion and Future Work

In this paper we showed an approach to make a anthropomorphic

robot throw a ball into a bin that is placed randomly in a region in

front of the robot. Instead of completely modeling the problem with

an exact physical simulation we proposed a different approach, to use

a simple simulation model and compensate the resulting error using

machine learning techniques.

To accomplish this we represented parametric joint space trajec-

tories as fifth order polynomials based on Bernstein basis functions.

The joint space trajectories are analyzed to identify the task space

motion. From the task space motions, based on an incomplete simu-

lation model, an estimation of the position where the ball will land is

given. By minimizing a constrained error function, throw movements

can be generated, that lead to arbitrary ball landing positions. The de-

viation between simulation and the real world is compensated using

a neural network that maps the estimated landing position of the ball

to a corrected one that corresponds to real world positions. Dynam-

ics that are unmodeled in the simulation and calibration errors are

compensated by this function. Providing a mapping from estimated

to corrected throw positions cascades the underlying parameters to

generate the trajectories, but this error compensation only works re-

liably if the resulting movements are similar. We build a database of

parameter configurations that stores example trajectories for distinct

target positions. In order to generate similar trajectories, the function

minimization is initialized using template configuration that results

in a nearby target.

Our solution gives a simple and practical approach to the given

problem, but suffers especially from one weakness. Different throw

configurations that are predicted by the forward model to have the

same ball landing position, but in reality result in different positions

cannot be handled by the simulation error compensation in its cur-

rent form. The correction is solely be made on the predicted target

coordinates from the forward model. The underlying parametric con-

figuration of the throw movement is not considered. Instead of learn-

ing a correction function, learning the forward model from examples

would solve this. Even better would be to learn the inverse model,

i.e. a function that directly maps goal coordinates to a proper throw

configuration. We want to look at this issue and try different learning

methods on this problem. Another possibility is to use reinforcement

learning methods, so that the estimation can get gradually better over

time with each trial. In [7] reinforcement learning was used to im-

prove an initial control policy given by imitation learning [4] to solve

the challenging ball in a cup task. One concern with this approach

might be, that while with the approach shown in this paper only 17

training samples where it is likely that control policy improvement

with reinforcement learning would need more data.
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Architecture of an Erlang-Based Learning System
for Mobile Robot Control

Łukasz Bęben and Bartłomiej Śnieżyński and Wojciech Turek and Krzysztof Cetnarowicz 1

Abstract. Machine learning methods have proven usability in many
complex problems concerning mobile robots control. The integration
of a learning algorithm with a mobile robot control systems is not a
trivial task. Limited resources of a mobile robots and heterogeneous
technologies used for creating robot’s controllers causes significant
difficulties in applying complex learning methods. In this paper an
Erlang-based architecture of a mobile robot control system is de-
scribed. It creates a virtual environment, which can host a novel,
Erlang-Based Distributed Learning Library. The Library can use re-
mote computational resources as well as robots on-board computers
to learn from collective experience of several robots.

1 INTRODUCTION
Many contemporary problems concerning mobile robots can be
solved using different learning algorithms. The most common learn-
ing technique in robot systems is reinforcement learning [13]. It al-
lows to generate robot’s policy (mapping between a world state and
actions) using feedback from the environment. There are many exam-
ples of applications like soccer, prey-pursuing or target observations.

Other learning strategies can be also applied. Good survey on
learning from demonstration is presented in [2]. In this approach
robot’s policy is learned from examples provided by a teacher. Var-
ious strategies may be applied to generate the mapping, with most
popular reinforcement learning and supervised learning (both regres-
sion and classification). Also plan learning can be applied.

Similarly, in multi-agent systems broad range of learning strate-
gies are applied [7, 9]. Here also reinforcement learning seems to
be the most popular technique. However, other strategies can be also
applied and agents may learn from its experience [6, 10, 1].

Real systems are often too complex for traditional learning tech-
niques [2]. Complexity problem may be solved by learning distribu-
tion. Also using supervised learning instead of reinforcement learn-
ing can give better results [11]. This leads us to the need of machine
learning framework for mobile robot control.

The integration of a learning algorithm with a mobile robot con-
troller is not a straightforward task. Typically robot on-board com-
puter has limited resources and computational power, which reduces
learning capabilities. The issue becomes more significant when a
group of robots is considered. The robots could collectively gather
data and learn using the common knowledge / experience. However,
this would require a proper management architecture of a leaning
system.

In this paper an Erlang-Based management and learning architec-
ture for multi-robot systems is presented. The architecture is based
on the assumptions of an agent-based dual-space control paradigm

1 AGH University of Science and Technology, Krakow, Poland

[12]. The learning infrastructure utilizes a novel Distributed Learn-
ing Library created in Erlang technology.

2 ERLANG IN MULTI-ROBOT SYSTEMS

The approach described in this paper is based on a technology, which
has been created for completely different applications. In this section
a brief overview of the Erlang technology is presented to justify us-
ability of the technology in robot control applications. Later on an
architecture of and Erlang-Based Robot Control System is described.

2.1 Erlang Language and Technology

Erlang is a programming language designed by Ericsson in early
nineties [3]. It has been developed as a platform for creating con-
current and distributed systems. Fundamental features provided by
Erlang technology are: high availability, fault tolerance, concurrency
and communication, soft real-time and ease of maintenance.

Erlang is a a functional programming language, which is compiled
to a byte code and executed in a virtual machine. The Erlang Virtual
Machine (EVM) can be run at almost every modern computer as well
as on on embedded devices or mobile phones. This feature is crucial
for using Erlang in robot control.

Several EVMs (called Erlang nodes) can connect with each other
creating a distributed runtime environment. Applications working in
a distributed Erlang machine can almost transparently use all avail-
able hardware and communicate using messages.

Erlang platform creates a distributed environment which does not
have a single point of failure. It is achieved by equating all nodes and
creating complete network of connections between nodes. This fea-
ture (illustrated in Figure 1) is crucial when control of robot groups
is considered.

MasterNodeEVM

Node

Node Node

Node

EVM

EVM

EVM EVM

EVM

Figure 1. Distributed virtual machine architecture. On the left: Erlang
approach with the complete network of connections; on the right: approach

with a selected master node.
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Figure 2. Logical separation of Erlang virtual machine and hardware hosting Erland nodes. The hardware control processes (hc) are executed on robots
on-board computers. Other processes can be executed on any node of the EVM.

Failure of one or a few robots (one or a few nodes) cannot cause
failure of the whole platform. Moreover, in this approach messages
routing is much faster due to direct connections available.

Each Erlang program is composed of processes, which never share
memory. Processes communicate by sending and receiving asyn-
chronous messages. Erlang does not use threads of the underlying
operating system to implement concurrency. It implements internal
light-weight processes which can be run in millions on a single com-
puter.

Another useful feature of EVM is the mechanism of hot code load-
ing. Source code can be changed on runtime, without stopping the ap-
plication. Even the internal state of a process can be preserved during
code modification.

It is worth mentioning, that the technology is not experimental. It
has proven its usability in many industrial applications. Several large
corporations use Erlang-based solutions for providing, large scale,
high-availability services.

The features of Erlang technology seem suitable for creating robot
control programs and systems for multi-robot group management.

2.2 Architecture of an Erlang-Based Robot
Control System

The assumptions of Erlang technology are very similar to the as-
sumptions of the software agent paradigm. Both are based on the
principle of autonomous, proactive pieces of software, which can
communicate using message passing concurrency. Therefore basic
ideas used in agent-based architectures for robot management can be
adopted for Erlang-based robot control systems.

Agent-based architectures has proven suitability for this type of
applications. Very important non-functional features of control sys-
tems can be easily provided by proper use of this paradigm. An ex-
ample of architecture designed for providing scalability, extensibility
and durability has been described in [12]. The dual-space approach
defines a virtual space for agents, which use hardware robots as tools.
This separation makes it possible to separate various functions of the
system in different, autonomous agents.

The biggest problem with real-world applications of agent systems
was caused by a technology used for creating software agent plat-

forms. The platforms are typically implemented in imperative lan-
guages using shared-memory concurrency. This creates significant
limitations in number of agents and messaging performance. Use of
Erlang technology could help overcoming this issue.

Erlang can create a virtual machine interconnecting several com-
puters. Connected computers can be heterogeneous, therefore one
platform can include hardware robot controllers and high perfor-
mance servers. The basic architecture of an Erlang-based robot con-
trol system is shown in Figure 2.

The architecture assumes, that each robot can host a node of the
Erlang virtual machine. Basic hardware operations, like reading data
from sensors or motor control are executed on this computer by dedi-
cated hardware control processes. The processes responsible for con-
trolling sensors implement publish-subscribe design pattern. This al-
lows several other processes to be automatically notified about new
sensor readings.

The processes, which perform complex computations or access
remote resources (large data structures, databases), can be executed
on remote computers. The can easily access all other processes and
simultaneously make use of efficient hardware.

This approach can be very useful in terms of machine learning. A
system can use several robots to collect data in the real environment
and execute learning algorithms on available servers. This approach
can make good use of a parallelized learning algorithms, which will
be described in next section.

3 LEARNING SYSTEM IN ERLANG
Erlang Machine Learning Library (EMLL) provides machine learn-
ing and data mining algorithms in Erlang. The library is designed to
take an advantage of distributed processing in order to process large
datasets in parallel manner.

Since robot agents and the library are both implemented using Er-
lang, the library can easily use both computer cluster or robots com-
puting resources as computing nodes. In other words, robots, which
are collecting the data, can use powerful cluster of computers to learn
from the gathered data. Robots can also cooperate and share their
computational resources to process the data concurrently (see fig. 4).
The library can process well known machine learning formats: Arff,
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Figure 3. The Machine Learning Library - communication diagram.

Machine
Learning
Library

Collected 
experience

MLL

MLL

Figure 4. Erlang Machine Learning Library can use robots’ resources, a
computer cluster or both as computation nodes.

C4.5. EMLL can also perform some basic data preprocessing like
discretization.

The library uses a central administering process called Supervi-
sor Manager to handle the computations. Supervisor Manager is
spawned at the beginning of the computation. Supervisor Manager
is responsible for managing computation requests, putting results al-
together and sending them back to the requesting node. It is also
responsible for monitoring remote nodes. If any node goes down dur-
ing computations, Supervisor Manager can redirect computations to
other node and repeat lost computations. As Supervisor Manager re-
ceives a computation request, it passes the request to the Load Bal-
ancer running in separate process and a computation is spawned on
the node chosen by the Load Balancer so as to optimize available re-

sources usage. Spawned task is identifiable and Supervisor Manager
can pass additional messages to the task. Tasks can send computa-
tion requests to the Supervisor Manager in a way similar to spawn-
ing local threads. The data is stored on nodes in ETS tables (O(1)
access synchronized hash tables), which means that data can be sent
to each node only once and then be used by many computing threads
spawned on the node. Since Erlang is not suitable for massive com-
putations, most computationally demanding parts of algorithms can
be implemented in other technology (for example in C) and easily in-
tegrated. Supervisor Manager can also manage events produced dur-
ing computations. Events are used mainly to profile computations.

Figure 3 presents a communication diagram which shows the ac-
tual computation flow. A user program interacts mainly with “mllib”
module. The user program can collect data from file (1) and a specific
format parser is used (1.1). User program can then invoke a specified
supervised learning or a data mining algorithm (2). “Mllib” module
spawns a Supervisor Manager (2.1), which creates Event Manager
and Load Balancer processes. At this point, all specified computa-
tions nodes are health checked and all input data is sent to ETS tables
on each node(if requested). First computation task creation request is
sent to the Load Balancer (2.2, 2.2.1) which spawns a new compu-
tation node (2.2.2). When an algorithm can split its computations
into parallel tasks, it sends a “compute” request to the Supervisor
Manager (2.2) and a new computation task is created using the Load
Balancer (2.2.1, 2.2.2). When the computation task finishes, an event
containing that task’s execution time is generated, and a result is sent
back to the requesting node (2.2.2). When the last root computation
task finishes, a result is returned to the User Program.

Currently, the library contains two supervised learning algorithm
implementations: C4.5, Naïve Bayes and a Data Mining algorithm:
Apriori. C4.5 was originally proposed by Robert Quinlan [8]. It uses
decision trees to represent the classifier. The tree is built using top-
down recursive approach. Naïve Bayes is a basic algorithm, that uses
the probability theory and Bayes theorem to classify data. The Data

5th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2012)
Montpellier, France, August 28 2012

47



Mining Apriori algorithm is able to produce both Association rules
describing the data or frequent sequences that can be found in the
dataset.

4 EXPERIMENTS AND RESULTS

We have performed several experiments in order to test the Ma-
chine Learning Library’s capabilities. We used datasets from a pop-
ular datasets repository - UCI Machine Learning Repository [4]. Be-
low we present learning results for Wall-Following Robot Navigation
Data Set [5]. The task associated with the dataset is a classification.
The goal is to learn a robot’s move that should be performed in order
to avoid collisions with walls. The decision is to be made based on
readings from 24 ultrasound sensors. The whole dataset consists of
about 5500 labelled examples. The actual available moves and class
distributions are presented in Table 1.

Move Samples in dataset
Move-Forward 2205 samples (40.41%)

Slight-Right-Turn 826 samples (15.13%)
Sharp-Right-Turn 2097 samples (38.43%)
Slight-Left-Turn 328 samples (6.01%)

Table 1. Characteristics of Wall-Following Robot Navigation Data Set

The dataset was split in a way, that 60% of samples from each
class’ category were included in a training set, and the other 40%
formed a test set. C4.5 algorithm was used in a supervised learning
process. The classifier performed well, assigning the correct category
to 97.5% of samples from the test set.

Figure 5. Learning time for 1-4 computing nodes

Learning was performed on a single 2-Core 4-Threads machine
using a couple of Erlang virtual machines. Each virtual machine’s
resources were restricted to one system thread only. Machines were
communicating using the network. Learning task was repeated us-
ing a different number of computing nodes. Results are presented in
Figure 4.

We can observe a significant reduction of execution times as the
number of computing nodes increases. At the beginning (when two
nodes are used instead of one), the calculation time reduction is very
big. At the end, the time reduction is minor because the costs of
transmitting data exceed paralelization benefits. It should be noted
that the overall execution time is high, because in a tested version all
the computations were performed in Erlang. However, our goal was
to test correctness and paralelization speed-up and the overall speed
was not crucial.

5 CONCLUSIONS AND FURTHER WORK
The Erlang technology is a suitable solution for creating complex
robot management systems. It provides distributed processing and
efficient message passing concurrency.

The Erlang Machine Learning library described in this paper
seems a promising solution for implementing learning algorithms
for mobile robot groups. It can integrate experience collected by
the group and parallelize learning process, utilizing robots on-board
computers and available servers.

Further research will focus on development of an experimen-
tal hardware platform. The group of wheeled rovers will be used
for evaluating real-life learning scenarios. Another task is to re-
implement computationally expensive parts of algorithms in a low
level language, like C, which can be easily integrated with Erlang
virtual machine.

ACKNOWLEDGMENT
The research presented in this paper has received founding
from Polish National Science Centre under the grant no. UMO-
2011/01/D/ST6/06146.

REFERENCES
[1] Stéphane Airiau, Lin Padham, Sebastian Sardina, and Sandip Sen,

‘Incorporating learning in bdi agents’, in Proceedings of the ALA-
MAS+ALAg Workshop, (May 2008).

[2] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing, ‘A survey of robot learning from demonstration’, Robotics and Au-
tonomous Systems, 57(5), 469 – 483, (2009).

[3] Francesca Cesarini and Simon Thompson, Erlang Programming - A
Concurrent Approach to Software Development, O’Reilly, 2009.

[4] A. Frank and A. Asuncion. UCI machine learning repository, 2012.
[5] Ananda Freire, Marcus Veloso, and Guilherme Barreto. Wall-following

robot navigation data data set, 2012.
[6] Dimitar Kazakov and Daniel Kudenko, ‘Machine learning and induc-

tive logic programming for multi-agent systems’, in Multi-Agent Sys-
tems and Applications, pp. 246–270. Springer, (2001).

[7] Liviu Panait and Sean Luke, ‘Cooperative multi-agent learning: The
state of the art’, Autonomous Agents and Multi-Agent Systems, 11,
2005, (2005).

[8] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, 1993.

[9] S. Sen and G. Weiss, Learning in multiagent systems, 259–298, MIT
Press, Cambridge, MA, USA, 1999.
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Task Variability in Autonomous Robots:
Offline Learning for Online Performance

Majd Hawasly and Subramanian Ramamoorthy1

Abstract. A problem faced by autonomous robots is that of achiev-

ing quick, efficient operation in unseen variations of their tasks after

experiencing a subset of these variations sampled offline at training

time. We model the task variability in terms of a family of MDPs dif-

fering in transition dynamics and reward processes. In the case when

it is not possible to experiment in the new world, e.g., in real-time

situations, a policy for novel instances may be defined by averaging

over the policies of the offline instances. This would be suboptimal

in the general case, and for this we propose an alternate model that

draws on the methodology of hierarchical reinforcement learning,

wherein we learn partial policies for partial goals (subtasks) in the

offline MDPs, in the form of options, and we treat solving a novel

MDP as one of sequential composition of partial policies. Our pro-

cedure utilises a modified version of option interruption for control

switching where the interruption signal is acquired from offline ex-

perience. We also show that desirable performance advantages can

be attained in situations where the task can be decomposed into con-

current subtasks, allowing us to devise an alternate control structure

that emphasises flexible switching and concurrent use of policy frag-

ments. We demonstrate the utility of these ideas using example grid-

world domains with variability in task.

1 Introduction

In this paper we address the autonomous agent’s problem of perform-

ing a specific task in a world drawn from a family of related worlds

with no opportunity to experiment afresh. Modelling these as MDPs,

we consider that all the processes have the same state-action space,

but differ in dynamics and/or reward processes. The agent, typically

a robot with limited knowledge of context, may have no knowledge

of the type of the new MDP; but it is asked to perform the task as

well as possible and in real-time, without further experimentation in

this new world.

1.1 Motivation

A robot is considered autonomous when it is capable of achieving

relatively sophisticated tasks in changing worlds and over an ex-

tended deployment time. A characteristic of these changing worlds is

that they are arbitrarily rich and may continuously change. In prac-

tice, the robot has only limited time in any newly-assigned task to

act efficiently. This real-time requirement is due to the change in the

world or the expiry of the task.

Consider, as an example, the case of a self-driving car in an urban

area. Even though the task is structured and probably well known,

1 School of Informatics, The University of Edinburgh, 10 Crichton Street,
Edinburgh, United Kingdom, EH8 9AB, email: m.hawasly@sms.ed.ac.uk

the vehicle has to interact with the unmodelled dynamics emerging

from the existence of other vehicles and pedestrians. The agent would

have been trained in many different situations, but given the size and

the richness of the problem, no specific instance would ever happen

twice. The vehicle should achieve its task, of navigating toward a

goal location, in real-time under the possibly unseen dynamics, and

with no chance to repeat the same interaction again as learning al-

gorithms usually require. The issue is more pronounced when the

task is inherently unstructured, like the navigation problem for field

robotics, or in the domain of disaster response.

1.2 Rationale

The question we are tackling then is: how should the offline expe-

rience be utilised to enable the robot to survive the online, real-

time task? Here, utilisation is interpreted as determining which be-

haviours, representations and control structures should be learnt and

how they should be used afterwards.

A standard reinforcement learning approach to deal with the vari-

ability might be to treat it as uncertainty generated by a big, latent

stochastic process. That is, to consider the family of MDPs as one

giant MDP. Then, a policy may be learnt for that stochastic process

if given enough time and experience. This form of learning across

the set of MDPs experienced in the offline phase would yield a sub-

optimal averaging policy.

In the control theory literature, where the goal is typically to

handle disturbances and dynamics abnormalities by devising large

basins of attraction, it is known that it is very hard to find suitably

robust large-basin controllers for many complex but realistic sys-

tems. So, a collection of controllers is devised instead, with each

controller specialised to stabilise a certain context, which then can

be sequenced in a way that achieves the desired robustness in the

complete task [3, 21]. Composing controllers in robotics has been an

issue of interest recently, and, besides control, the question of rea-

soning about generic robot capabilities to generate viable plans that

adhere to task specification has been investigated, e.g., using sym-

bolic reasoning [2].

Here, we take a similar approach but posing the question using

reinforcement learning. In [3], Burridge et al. employ a backchain-

ing mechanism on a set of hand-designed feedback controllers with

overlapping domains of attraction and goal sets, creating a hierar-

chy of ‘funnels’, to produce robust trajectories that lead to the goal

starting from a large applicability domain (specifically, the union of

individual controllers’ domains of attraction). Here, we learn a set of

policy fragments from the offline instances, we organise these poli-

cies in an appropriate control hierarchy, and we employ a switching

paradigm that promotes reactivity to the environment ‘feedback’, ex-
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tracted from the changes caused by the unmodelled dynamics.

1.3 Approach

Reinforcement Learning (RL) is the classical technique for learning

from online interaction [18] giving automatic guarantees for station-

ary environments, but careful thought and design effort are needed

to make it work properly in situations with levels of change that

cannot be described as slight parameter drifts. Besides, RL meth-

ods require many training episodes to achieve good performance in

any task, which is problematic with our real-time ‘one-shot’ require-

ment. Model-based methods can achieve acceptable performance

faster than model-free methods but need a good model of the environ-

ment, which is a ‘moving target’ that we assume we cannot identify

fully. Hence, our focus is on the problem of structuring the RL prob-

lem so as to exploit the structure in the world and the task to achieve

the stated requirements.

We propose to decompose the task into a collection of subtasks,

then learn policies for these subtasks from the offline instances. We

claim that factoring the variability into these components is bene-

ficial to the quality of the produced policies. After that, we learn

to compose these subtasks for novel instances, producing a policy

that takes into account the new instance through an indirect feedback

mechanism.

We argue that decomposing the task into subtasks, in the spirit

of hierarchical reinforcement learning [1], and learning component-

wise policies from the experienced MDPs may be beneficial to online

performance. The intuition comes from the benefits of decomposition

as a standard approach to learning in intricately complex stochastic

systems, such as the process that generates all the variation in our

problem, by factoring the variation to multiple subtasks and how they

are put together, reducing the blurring effect induced by policy av-

eraging. Our proposed method applies to any domain where the task

has internal structure that supports such a decomposition, and many

practical domains of interests satisfy this requirement.

We require that the robot has sufficient offline training time to

learn in a few samples of the MDP family. In practice, this needs not

be a separate phase, but all the experience accumulated in past inter-

actions can be included to handle the new instance (cf. lifelong learn-

ing [22]). In the training phase, the robot may develop a set of capa-

bilities - generic, reusable controllers that target relevant subtasks

across the family of experienced worlds. To interpret these in the

language of Hierarchical Reinforcement Learning (HRL), one may

consider them to be options [19]: temporally-abstracted actions. If

the task supports a set of variation-persistent subtasks, we can utilise

the offline phase to develop a hierarchical model describing the task.

A key aspect of our proposed approach is that through such a decom-

position, a hierarchical model of offline-developed capabilities might

outperform the alternative of an averaging policy learnt across the set

of unstructured MDPs. In particular, we will show that this enables

the agent to ’jump start’ in terms of performance in a novel instance,

without having to learn afresh.

A caveat that must be associated with any usage of hierarchical

models in RL is that the best policy that can be achieved, in the gen-

eral case, may be suboptimal. The notion of optimality in HRL is

known as hierarchical optimality which refers to the goodness of

policies in the hierarchy-induced policy subspace [5]. Nonetheless,

the true optimality can be approached by modifications to the hierar-

chy or its induced control [7, 5].

One such modification in the options framework is known as in-

terrupting options [19], which is a means that plays on option termi-

nation conditions to improve global performance in a specific MDP.

The termination condition of an option is not restricted anymore to

reaching a terminal state, but also in cases when a better option at

some intermediate step can be invoked. This would loosen the con-

straints on the policy space, allowing policies that are chains of sub-

trajectories rather than chains of complete option-generated trajecto-

ries. To generate the interruption signal, the knowledge of all option

values at all states in the specific MDP is usually assumed. This re-

quirement is strong if the world is not known a priori. We propose

that this can be relaxed by using values that are not immediately from

the current instance, but rather statistics from the offline MDPs.

Another improvement can come from the hierarchical decompo-

sition itself. Usually, subtasks are chosen to represent different ob-

jectives that the agent may need to achieve while seeking its goal.

This decomposition does not often produce truly ‘orthogonal’ sub-

tasks. The resulting policies, in many cases, share the state-action

space and may have overlapping or non-compatible reward signals.

Nonetheless, the hierarchical model eventually handles them as if

they are truly independent, just as the standard RL framework han-

dles primitive actions. To tackle that, we propose to include in the

hierarchy, along with the original subtasks, a collection of composed

subtasks: policies that achieve the goals of some subtasks concur-

rently, optimising their overlap.

In this paper, we will use the options framework to build a hier-

archy to organise a set of policies (and compositions) learnt from

extended offline experience, and plan with a reactive interruption

mechanism allowing flexible sequencing in response to changes in

the environment. Also, we relax the decomposition boundaries in-

duced by the hierarchy by learning to achieve multiple subtasks at

once for subtasks that support concurrency, and propose an alter-

nate control hierarchy around that. We demonstrate these techniques

using two gridworld tasks: a navigation task with changing, unpre-

dictable wind, and a resource gathering task with partial observability

and adversaries.

2 Setup

2.1 Markov decision process

We assume that the task of the robot can be modelled as a discrete-

time Markov decision process (MDP). An MDP m is the tuple

(S,A, T,R), where S is a finite state space, A is a finite action space,

T : S × A × S → [0, 1] is the (stationary) dynamics of the world,

and R : S × A × S → R is the (stationary) reward process that

encodes the goal of the task.

A (Markov) policy for an MDP is a (stochastic) mapping from

states to actions, π : S × A → [0, 1], and the optimal policy π∗

is the policy that maximises expected cumulative reward. The cu-

mulative reward is summarised using a state-action value function:

Qπ(s, a) = E
π{rt + γrt+1 + γ2rt+2 + . . . |s, a} for the future

rewards {rt} and the discounting factor γ. The optimal action value

function is Q∗(s, a) = maxπ Qπ(s, a) for all pairs (s, a).

2.2 Family of MDPs

We model the variability in a task using a family of related Markov

decision processes M with the same goal. The family shares the

state-action space S×A, but the dynamics Ti : S×A×S → [0, 1]
and the reward process Ri : S × A × S → R may be different

for each MDP in the family mi ∈ M. We assume that the vari-

ability model, formally defined as {T ,R} where Ti = T (i) and

5th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2012)
Montpellier, France, August 28 2012

50



Ri = R(i), to be unknown to the agent. The agent ‘samples’ from

the variability model during the offline learning phase.

2.3 Semi-Markov decision process

In a semi-Markov decision process (SMDP), actions are allowed to

extend over multiple time steps. This makes reasoning about time ex-

plicit in learning and planning. This kind of process emerges when

dealing with temporally extended actions in MDPs, e.g. in hierarchi-

cal reinforcement learning.

2.4 Options and Interruption

The framework of options is one approach to hierarchical reinforce-

ment learning [1, 19] using temporally-extended actions. An option

is the three-tuple 〈I, π, β〉: I ⊆ S is the initiation state set where

the agent is allowed to invoke the option, π is a (Markov or semi-

Markov) policy which be followed when the option is invoked, and

β is a termination probability distribution over the state space, which

encodes stochastically the termination condition of the option. Op-

tions are flexible objects that generalise primitive actions which can

be considered as (trivial) 1-step options for planning purposes.

For a set of options O, an option switching policy µ : S × O →
[0, 1] is a (stochastic) map from states to options. It is proven that

sequencing a set of (Markov or semi-Markov) options from O de-

fined over an MDP gives a well-defined semi-Markov decision pro-

cess (SMDP), allowing planning and learning of µ via similar ap-

proaches to planning and learning in MDPs [19]. Qµ is the option

value function for µ.

Normally, an option selected by µ at some state continues to run

until its termination condition is satisfied. On the other hand, option

interruption is the process of switching control from the running op-

tion before its normal termination if its value at the current state st
is inferior to the expected value of the policy at st: Q

µ(st, o) <∑
q∈O

µ(st, q)Q
µ(st, q). This is a kind of non-hierarchical execu-

tion in HRL, and it allows for performance improvement over the

SMDP policy.

3 Handling task variability

3.1 Averaging policy

For a set of sampled MDPsM′ ⊆M, the mean MDP m̄ is the pro-

cess that has the same state-action space S×A as the members ofM
but has the dynamics and reward processes {T̄ , R̄} = EM′{T ,R}.

The averaging policy π̄ is the optimal policy for the mean MDP

m̄. Note that the value function of this policy averages sample returns

generated from the models of sampled members in the family. If the

variability inM is extensive, the performance of π̄ would be poor in

general. Intuitively, This is due to the policy trying to choose actions

that suit the full spectrum of dynamics and rewards, and thus ending

up with actions that are conservative for many of the task instances.

Note that the specific averaging policy that will emerge from training

on someM′ will depend on the nature of the sampled MDPs as well

as the sampled trajectories in them.

3.2 Capabilities: offline options

A capability is a skill that targets a specific subtask that occur fre-

quently in the worlds that an agent has experienced. We model that

subtask as an MDP that possibly lives in a subspace of M’s state-

action space, and which has a localised dynamics and a special re-

ward function.

A capability can be described as an option 〈I, π, β〉, with I and β

specifying the subtask (where the capability is viable, and when to

stop it), and π being the policy learnt for the subtask across the set

of offline instances that have been experienced. For this, we call a

capability an offline option.

Because it is a smaller problem, we argue, as we show later in

the experiments, that a capability will be less affected by variability

compared to the full task. Intuitively, the initiation set I ⊆ S and the

policy π will limit the generated trajectories to a subset of all trajecto-

ries, which will reduce the dynamics variability effect on the option.

Also, the capability’s reward targets, by definition, a more persistent

component of the complete task reward, making it less susceptible to

reward variability.

Defining capabilities as options allows us to interpret the capabil-

ity switching strategy as as an option switching policy µ that can be

learnt over the SMDP induced from the set of offline options. Re-

member that in our case, however, the agent is unable to learn the

switching policy µ for the online instance directly, due to the real-

time requirement. If an averaging switching policy µ̄ is to be learnt

to achieve the task from offline experience, this would only produce a

hierarchically-optimal policy for the mean MDP, which will be sub-

optimal to the averaging policy π̄ in the general case. To improve on

that, we propose to incorporate a notion of option interruption into

the process. This is described in the next section.

3.3 Offline interruption

Employing interruption in the options framework not only improves

performance through non-hierarchical execution of hierarchical poli-

cies, but also adds an element of ‘reactivity’ in the control structure

by making it sensitive to the state of interaction. This appears to be

useful for handling unknown situations, but the interruption condi-

tion in the original concept [19] requires knowledge of all option

values in the desired instance, which we do not have. We propose

a modified notion of interruption that depends on values extracted

form the offline experience.

Definition 1 (Offline interruption). A running option o in the un-

known MDP m may be offline-interrupted at state st if the maximum

value of o at that state in all instances under the averaging option

policy, Q̂µ̄(st, o) = maxm∈M Qm,µ̄(st, o), is strictly less than the

averaging value of interrupting o and selecting a new option accord-

ing to the policy µ̄: Q̂µ̄(st, o) < V µ̄(st) =
∑

q
µ̄(st, q)Q

µ̄(st, q).

The intuition is that the choices of µ̄ would be conservative and

‘safe’ across the set of experienced MDPs, and following µ̄ would

be suboptimal in general. When the best seen value of the running

option goes below that stable safety threshold upon reaching some

state, it is reasonable to follow the safe choice. Because the agent

only observes a subset of all instances M′ ⊆ M, we estimate

the maximum value function from the seen instances: Q̂µ̄(st, o) ≈
maxm∈M′ Qm,µ̄(st, o). Then, there implicitly lies an assumption

that the real value of the option at the current instance would not be

higher than what have been seen so far in the offline instances.

Following the original theorem of option interruption [19], we give

a condition for offline interruption soundness in the next theorem.

Theorem 1 (Offline interruption). For a family of MDPs M, a set

of options O defined over the family, and an averaging switching
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policy µ̄ : S × O → [0, 1], define a new set of option O′ with one-

to-one mapping between the two option sets except for termination

conditions which are defined as follows: β = β′ for all states but the

ones in which Q̂µ̄(s, o) < V µ̄(s) – that is, the maximum value at

s for an option o is less than the expected value of that state under

the averaging policy – then we may make the termination condition

β′(s) = 1. Let µ̄′ be the policy over O′, µ̄ = µ̄′. If the averaging

policy is pessimistic with respect to values in an instance m ∈ M,

then µ̄′ is no worse than µ̄: V m,µ̄′

(s) ≥ V m,µ̄(s) for all s ∈ S.

Proof. We follow the proof in [19]. In some arbitrary MDP m,

for V m,µ̄′

(s) ≥ V m,µ̄(s) to be true for arbitrary s, it is enough

to show that following µ′ from s then continuing with µ is no

worse than following µ all the time. So, it is enough to show that:

ro
′

s +
∑

s′
po

′

ss′V
m,µ̄(s′) ≥ ros +

∑
s′
poss′V

m,µ̄(s′). The two sides

are equal for any history ss′ that is not interrupted (because the poli-

cies are the same in that case), therefore we shall only consider the

expected value under interrupted histories. That is, we would like to

prove that: E{r + γkV m,µ̄(s′)} ≥ E{β(s′)[r + γkV m,µ̄(s′)] +
(1 − β(s′))[r + γkQm,µ̄(s′, o)]}, for the interrupted histories ss′

under o′ followed by o. This is true if Qm,µ̄(s′, o) ≤ V m,µ̄(s′), i.e.

the return from the interrupted option o at interruption state s′ in the

specific instance m is less than the return of µ̄ in m.

We know that Qm,µ̄(s′, o) ≤ Q̂µ̄(s′, o) (by the definition of Q̂µ̄),

and that Q̂µ̄(s′, o) < V µ̄(s′) for all interruption states s′ (by the

definition of offline interruption). For that, the proof will be com-

pleted when V µ̄(s′) ≤ V m,µ̄(s′), ∀s′, i.e. the averaging policy pes-

simistically underestimates the values of the interruption states in the

instance m.

Although the premise would not be true always for any instance

m ∈M, the method is still able to produce good results empirically.

Algorithm 1 gives a simple procedure for decision making with of-

fline options and offline interruption.

Algorithm 1 Decision making with Offline Interruption

Require: O: option set; µ̄: averaging option policy; Qµ̄: value

function of µ̄ over O; Q̂µ̄: maximum values of the option set

O under µ̄; st: current state.

1: orun ← φ.

2: for every time step t do

3: if orun is empty then

4: orun ← argmaxo∈O Qµ̄(st, o).
5: else

6: if Q̂µ̄(st, orun) <
∑

q
µ̄(st, q)Q

µ̄(st, q) then

7: o ∼ µ̄(st, .)
8: orun ← o.

9: end if

10: end if

11: at ∼ πorun(st, .).
12: end for

In the algorithm, µ̄(s, .) is a probability distribution over options,

corresponding to the option switching averaging policy, and πo(s, .)
is a probability distribution over other options or primitive actions,

corresponding to option o’s policy.

3.3.1 Example - Windy gridworld

The aim of this experiment is to test offline options and offline in-

terruption. A gridworld of 5× 5 cells has an obstacle with two exits

(Figure 1). Wind blows immediately before the exits. It has an un-

known but fixed direction in any instance, and it blows strong gusts

with an unknown but fixed probability throughout the episode, push-

ing the agent one cell at a time. The goal of the agent, starting from

a cell in the the leftmost column (marked with ’S’), is to pass one

of the exits to the right side (marked with ’G’). The agent gets -1

penalty for every action taken until the goal is reached or the episode

elapsed (100 time steps). Moving towards a wall does not change the

location of the agent, but it will cost it the usual penalty.

Figure 1. The Windy gridworld. The agent starts randomly in one of the
cells marked with ‘S’ and is tasked with reaching any of the cells marked

with ‘G’. The arrow indicates the locations and possible directions of wind.

Each instance of this MDP family is characterised with two pa-

rameters (p, dir). p ∈ [0, 1] is the probability with which the wind

will succeed in changing the position of the agent, while dir ∈
{North, South} is the wind direction. The agent might be pushed

one cell in the direction dir with the probability p while in the windy

cells. Figure 1 shows the setup.

The agent experiences many instances of this family in the offline

phase, and learns an averaging policy across all these instances. This

is a policy over the primitive actions that reaches the goal via any

of the two exits. At the same time, the agent is made to learn two

options with handpicked goals, one for reaching the goal through

each of the exits. The agent learns an averaging option switching

policy as well, and estimates the maximum option values from these

training instances using a Monte-Carlo learning method.

Figure 2 shows the result of 5 runs of a 10000-episode testing

phase.

In each test episode, the agent is given 100 time steps in a new

instance (p, dir), in which both the flat averaging policy and the

offline-interrupted option policy are evaluated. The performance cri-

terion is the accumulated reward in the episode (ranging from -100

to 0). We report in Figure 2 the difference in performance between

the two methods, sorted in ascending order to ease interpretation.

As the figure shows, the offline-interrupted option policy is no

worse than the flat averaging policy in almost 80% of all episodes.

This can be justified by the ability of the leant partial-policies to cap-

ture delicate details about the interaction (e.g. the consistent correla-

tion of the wind direction in the windy cells), in contrast to the flat

averaging policy. Also, the interruption mechanism allowed for ac-

tive intervention in the control process (sensed through the change in

state) that put that knowledge into play. The results look similar if the

setup is not identical in the learning and testing phases, e.g. having

only southerly winds in the test phase.

3.4 Composition-based hierarchy

Although decomposition of a task is beneficial to manage variabil-

ity and improve performance in an unknown world, the hierarchy

does limit the producible policies to a policy subspace spanned by
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Figure 2. Difference in performance between the offline-interrupted option
policy and the averaging policy in 5 runs. Values above zero are episodes
where the offline interruption outperforms the averaging policy. Note that

episodes are sorted in the figure by performance to facilitate interpretation.

sequences of (sub-)trajectories generated by the (interrupted) op-

tion policies. This is a known problem of hierarchical reinforcement

learning that resulted in adopting various optimality criteria by HRL

methods [5]. We propose next a representation for tasks that admit

concurrent execution of subtasks.

3.4.1 Subtask composition

In robotic applications, subtasks are rarely fully independent in the

way HRL frameworks handle them. That is, it is common that option

policies share state-action space and may have conflicting or interact-

ing goals. We propose to learn options that target the goals of more

than one subtask at once, and we call these composed subtasks. This

can be interpreted as a controlled kind of concurrency for policy syn-

thesis.

Definition 2 (Composed subtask). If the domain of applicability of

two offline options happen to intersect in a non-trivial way, a new op-

tion can be defined for that intersection where both the correspond-

ing subtasks are tenable. For o1 and o2 being offline options with

domains S1 × A1 and S2 × A2 respectively, a composed subtask

o1,2 is a capability (of order 2) defined for the state space S1 ∪ S2

and the action space A1∪A2 that optimises the goals of the two sub-

tasks simultaneously. For the composed subtask o1,2, the subtasks o1
and o2 are called components.

Because o1,2 subsumes o1 and o2 in domain and reward, an action

taken by a component subtask policy is an action of the composed

subtask from a learning point of view. This leads to that every learn-

ing update of a component policy also triggers an update for its par-

ent, composed subtask. Thus, almost all learning in the hierarchy can

happen off-policy while learning the components at the leaves, and

very little additional learning effort is ever needed.

Composition is not limited to order 2. Three subtasks may be com-

posed to produce a higher-order subtask, but if the components are

pairwise-composable. The composition relation defines a tree hier-

archy with the primitive options at the leaves, and more complex

subtasks at higher levels.

3.4.2 Model description

Composed subtasks can be used as any other option for the purpose

of policy synthesis, along with their offline values and interruption.

This will produce richer policies that are closer to true optimality.

However, this ‘unstructured’ approach ignores the natural subsump-

tion of these subtasks. We would like to see the composed subtask

given the priority over its components when it is able to achieve

their joint objectives. That is, an appropriate component should take

charge only when the composed subtask is not tenable, but handles

control immediately when it is. The generic options framework does

not provide us with this flexibility.

To emphasise that, we propose a control hierarchy for concurrent,

rather than sequential, tasks that we impose over our offline option

implementation. In the composition-based hierarchy, control always

starts with the highest-order composed subtask (which achieves the

goals of all the subtasks underneath). Note that the policy of this sub-

task is the full task averaging policy. This process is allowed to run as

long as it is able to achieve its objectives. Otherwise, it is interrupted

and control is moved to an appropriate component. The component,

which may be composed from other subtasks as well, is run in a

similar fashion. The trick is that the status of the parent subtask is

continuously checked, and when it is ready to run again, the running

component is interrupted and the parent subtask regains control. In

short, control is moved up and down the tree hierarchy, from the more

general to the more specific and vice versa, in response to changes in

the world captured by the offline interruption function. This can be

seen as a special kind of polling execution of non-hierarchical exe-

cution of hierarchical policies [5].

3.4.3 Learning a model of subtask attainability

The mechanism of offline interruption is one way to learn control

switching from seen instances, but it is not by any means the only

one. Any function that has the quality of predicting the viability of

subtasks can be considered a generalisation to the interruption mech-

anism. This, for example, is important if the variability in rewards is

high in a way that makes relying on upper bounds less useful. Sub-

task robustness is one example of these generalisations.

Robustness is an offline estimate of goal attainability that does

not depend immediately on the rewards accumulated by the differ-

ent policies. Rather, it abstracts away from values and ask explicitly

about the success or failure of a subtask. It utilises a level of aspira-

tion as a threshold to control when to switch out from one policy.

One simple realisation of robustness can be in the form of a state-

action value function, e.g. acquired using Q-learning. The value

R(o, s, a) estimates the expectation that the option o will be able

to achieve its goals from state s and action a. Switching can be

controlled through a threshold τ that represents the level of relia-

bility/safety the agent requires. Whenever the option fails to deliver

robustness at least as high as the threshold, e.g. due to unobservable

task parameters, it is deemed unsafe to use and suspended. This is

a trade-off between performance and safety, as robustness prefers a

policy that is safe when the world unexpectedly changes, but cannot

in general guarantee performance. The robustness threshold τ can be

used as a tunable parameter to control the risk attitude of the agent.

Note, however, that the notion of robustness should not be re-

stricted to simple scalar value functions, but can have other forms

that reflect the viability of capabilities at states in different settings.

This may include, for example, a Pareto efficiency measure with a

Pareto frontier as a switching threshold in multi-objective capabil-
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ities, or the utility of correlated equilibria with a minimax solution

threshold in interactive, multi-agent setting.

3.4.4 Algorithm

Algorithm 2 shows a simple procedure for action selection by hi-

erarchical search in a composition-based hierarchy K. The running

option o is used as long as it is able to produce satisfactory behaviour

as defined by its robustness function (line 6). If the robustness drops

below the threshold τ , o is suspended and one of its components are

selected using a suitable metric, e.g. robustness (line 10). The new

capability is used similarly (line 11) until the robustness of the par-

ent is recovered above its threshold (line 3).

Algorithm 2 HierarchicalSearch

Require: K: task hierarchy; orun: running subtask; p: parent sub-

task; τ : robustness threshold; st: current state.

1: ap ∼ πp(st, .).
2: if R(p, st, ap) > τ then

3: return ap.

4: else

5: a ∼ πorun(st, .).
6: if orun is primitive option or R(orun, st, a) > τ then

7: return a.

8: else

9: O′ ← components of orun in K.

10: q∗ ← argmaxq∈O′ R(q, st, a).
11: return HierarchicalSearch(K, q∗, orun, τ , st).

12: end if

13: end if

The first call to the algorithm takes the root of the hierarchy as

the running subtask. πo(s, .) is a probability distribution over prim-

itive actions related to the policy of option o at state s. The function

R(o, s, a) returns the robustness of state-action pair (s, a) for the

option o. Finally, the function HierarchicalSearch is a recursive

call for the procedure itself.

3.5 Example - Wargus resource gathering task

Following the setup in [14], we implemented Wargus resource gath-

ering task. On a gridworld of 32 × 32 cells, an agent has to collect

items while avoiding an adversarial patrol agent. Agents can move

in the eight compass directions, they can only see objects less than

8 cells away (but bearing is always observed), and the adversary can

shoot for a maximum range of 5 cells. The objective of the agent is to

collect as many items as possible in a specific duration. These items

appear in the world one at a time and stay in place until picked by the

agent, triggering a new item to appear in a random spot. The patrol

agent navigates in a random walk most of the time, but when it sees

the agent it uses the shortest path to it, then shoots once in range.

The variability in this task comes from the random (and, most of-

ten, unobservable) location of items, and the random (and, most of-

ten, unobservable) location of the adversary. A specific assignment of

these two parameters produces one MDP from the possible family.

3.5.1 Experimental setup

No relearning is allowed for our agent, and hence every instance of

the world is tried by the agent only once. We mix the training and

testing phases in this experiment, such that new instances use all the

knowledge gathered in all the previous episodes, an approach related

to the notion of lifelong learning [22].

For this, the agent starts with no prior knowledge of any sort and

learns everything (averaging policy, options, switching policies, ro-

bustness) from scratch.

An episode starts with a random positioning of the two agents

and a single item, and it only ends when the agent is destroyed or

when the episode elapses. Performance is measured by the number

of items the agent manages to gather throughout the episode. A set

of 30 episodes followed by a set of 5 nominal test episodes is called

a trial. The test episodes have fixed parameters, but the agent is not

allowed to learn in them. This is in order to test the improvement

in performance as more experience is gathered. We report the scores

achieved in the nominal test episodes.

The experiment is run for 500 trials, and repeated 5 times with the

final scores averaged and smoothed.

3.5.2 Methods

We compare the composition-based hierarchy with 3 other methods:

a simple averaging policy, offline options, and offline options with

interruption:

• Averaging policy: Q-learning over the 8 primitive actions, trained

across all the experienced instances.

• Offline options: three options, and their switching policy, are

learnt. The options are: ToGoal (TG) for navigating towards

the item, FromEnemy (FE) for navigating away from the pa-

trol agent, and TG+FE, the composition of the two. These options

are designed to start anywhere on the grid, and terminate upon the

occurrence of an event such as seeing the adversary or losing sight

of the goal item. The option policies and the switching policy are

averaging policies over the experienced instances.

• Offline options with interruption: we added to the previous imple-

mentation an offline interruption mechanism that uses the offline

values of the option policy. That is, the policy may switch between

the three options based on their maximal historical values, rather

than having to wait until normal termination.

• Composition-based hierarchy: the hierarchy in Figure 3 is imple-

mented using the same options as above and the following ro-

bustness function: the robustness values for the TG is acquired

using Q-learning with the reward +1 if an action leads the agent

to where the goal is reachable (seen), −1 only when it leaves the

reachability area, and 0 otherwise. For FE, a penalty of−1 is given

as long as the agent is within the range of sight of the opponent,

+1 once when it escapes it, and 0 otherwise. The composed sub-

task TG+FE learns using the sum of the two rewards. The robust-

ness threshold is chosen empirically to be 2 for all capabilities.

3.5.3 Results

We compare the performance of the four methods for 500 trials. The

results are shown in Figure 4.

As the results show, using the composition-based hierarchy is su-

perior to the other three methods. It exploits the composed capability

much more than the other methods, specifically in every state where

the subgoals are not in conflict, producing the score difference. No-

tice that the composition-based hierarchy is approximating the opti-

mal averaging policy, hence it cannot beat the averaging policy’s Q-

learning asymptotically if given enough time and experience. Still,
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Figure 4. Performance in 500-trial Wargus resource gathering experiment. The curves show the average item count in the test phases of each trial. The curves
are means of 5 repetitions, and the error bars show the standard deviation. The composition-based hierarchy (solid - blue) outperforms the other

implementations in this task with a clear margin, and achieves the performance level of the averaging policy (green - dashed) in less than third the time. The
bars underneath the plot show the time needed by these two methods to achieve 90% to their maximum performance.

Figure 3. Composition-based hierarchy of the Wargus resource gathering
experiment. The bottom nodes represent the subtasks of seeking the resource
and escaping the adversary, respectively. The upper node is the composition
of the two, with the goal of achieving both objectives at once (here, the full

task). The arrows connecting the nodes suggest how control flows flexibly up
and down the hierarchy in response to changes in the environment.

the performance head-start is evident as well as the persistent differ-

ence in performance for the first half of the experiment. The averag-

ing policy approach needs around 15000 episodes to catch up. The

shaded regions in the figure show the time required by the two meth-

ods to achieve 90% of their final performance. While the averaging

policy needed more than 350 trials, the composition-based hierarchy

achieved that in around 100 trials.

Our method needed more time than the other methods in the first

few episodes to ascend performance. This can be justified by the need

to learn a robustness function in addition to learning the option poli-

cies as required by the other methods as well. Remember that these

policies and functions are to be readily learnt in the offline phase,

preparing the robot to perform immediately in the real world.

4 Related work

The problem of dealing with task variations is of fundamental interest

within autonomous robotics, and autonomous agent design in a more

general setting. This problem has been studied from many different

angles, with tools and techniques being developed to address aspects

of the full problem.

One such thread, of relevance to the discussion in this paper,

is transfer for reinforcement learning [20]. Techniques for transfer

learning attempt to use an existing policy in a source task, typically

as an exploration policy to bias learning in a novel target task, with

the hope of achieving learning speed-up. When transfer works well,

it is because of exploitation of structural properties of tasks which

allows for reuse. This is the high-level goal of our approach as well.

However, at the algorithmic level, in contrast to transfer as a bias

that speeds up learning over numerous trials, we seek a policy that

may be immediately applied in a novel instance (in some cases, as

a sophisticated initialisation to a final learning step which allows for

convergence to a true optimum, but we do not handle this in this

paper). Another difference is that we aim to repeatedly apply that

transferred policy in many different novel, unknown worlds, while

the usual assumption in transfer is that there is a single (and usually

known) target task. This is the motivation behind our definition of the

problem in terms of policy fragments that are sequenced in different

ways to achieve a novel policy.

Multi-task reinforcement learning (MTRL) [20] is a specific

branch of the general problem of reinforcement learning transfer,

in that it explicitly targets the problem of variation within a fam-

ily of tasks. Typically, in the MTRL setting, tasks share the same

state-action space, and the aim is to learn a policy from sampled task

instances that appropriately utilises this experience of multiple con-

texts, for example, yielding an Average Value Function [13] which

is similar to our averaging policy. Some MTRL methods (e.g. [12])

assume the observability of the type of the task, while our assump-

tion that the agent is oblivious to that is more practically plausible.

Others allow the agent many trials in the new world (e.g. [6]), while

we require the agent to act promptly without time to learn afresh.

Bayesian methods (e.g. [23]) assume explicit knowledge of the dis-
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tribution describing the MDP family, whereas we do not.

In this paper, we assumed that the capability goals are cho-

sen by the designer. However, learning these could have also been

considered (cf. learning structure and subgoal discovery in HRL,

e.g. [11, 17, 9, 8]).

Learning termination conditions for pre-acquired options is dis-

cussed in [4]. They use gradient descent procedure on a special func-

tional encoding of the termination condition to learn the optimal

switching points under certain requirements, not necessarily max-

imising accumulated reward. We aim for a more general and less

constrained approach for interruption, using offline values and ro-

bustness functions.

Finally, Concurrency and composition in HRL is a problem with

some history within the literature, e.g., concurrent ALisp [10] and

concurrent options [15]. In [16], an explicit approach to composing

policies is given. We alternatively opted for allowing the agent to

learn the composed subtasks in the offline training phase, as it learns

the other options. We believe this to be the better approach to capture

the intricacies of different domains and subtask models in order to be

able to deal with the problem of offline learning for improved online

performance.

5 Conclusion

The main motivation for this paper is the problem of designing an

autonomous robot or agent that is capable of quickly and efficiently

solving a variety of different problems, drawn from some family

defining the domain. This family of problems represents many real

world effects, including incompleteness of knowledge arising from

the arbitrary richness of the environment (e.g., factors outside the

model that do have additional dynamics), or continual change (such

as due to other agents in the environment). This way of phrasing the

problems differs from the more traditional question of obtaining an

optimal policy for a stochastic environment, although the issue is in-

creasingly being considered in many different communities such as

under the heading of transfer and multi-task learning.

We have presented a novel approach to policy design and learn-

ing, wherein we learn subtasks that make sense across the entire

domain (for multiple task/environment settings) and associate with

them models such as for interruption. This allows us to define novel

policies in terms of compositions of policy fragments that are learnt

offline. Our approach builds on existing methodologies such as hi-

erarchical RL with options, but modifies them to address the more

general problem identified above. With this, we demonstrate that we

are able to achieve superior performance in an online setting, bene-

fiting from problem structuring.
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Teaching a Helicopter to Fly with EANT2 – Initial Results

Nils T Siebel1 and Sven Grünewald2

Abstract. Evolutionary algorithms are a popular tool to find good

solutions for complex optimisation problems. However, they tend not

to work well in reinforcement learning (“RL”) scenarios. In this short

paper we present results from initial experiments where our neuro-

evolutionary method EANT2 learns to control a helicopter from the

RL-Competition problem base for 2009. The results are promising,

although areas for future work remain.

1 INTRODUCTION

Controlling a helicopter is a difficult task indeed. It is considered

harder than to pilot an aircraft [7]. One of the most difficult tasks for

a helicopter pilot is to hover in mid-air. Learning this is very difficult

for human operators (ibid.).

In 2009’s RL-Competition (Reinforcement Learning Competi-

tion [13] a software environment was made available to learn hov-

ering by reinforcement learning using the RL-Glue3 framework in a

simulation.

Using this framework, we have applied our neuro-evolution learn-

ing technique EANT2 [9] to learn this control in the reinforcement

learning environment. In this short paper we will briefly show initial

results from these experiments.

2 PRELIMINARIES AND RELATED WORK

2.1 Reinforcement Learning

Reinforcement learning [11] is a learning method based on the prin-

ciple of trail-and-error. An agent, equipped with sensors, is acting in

an environment. It is given a reward based on results of its actions,

according to a given task unknown to the agent. The agent can learn

to solve the task better by maximising the reward (minimising the

error) without ever being told which action would be the best in a

particular situation.

There is a range of standard “Reinforcement Learning” (“RL”)

methods set in this scenario, which can be found in the book cited

above. In this article we will be using a different method – in the

strict sense, no RL method – which nevertheless operates in the RL

scenario, using rewards and never been given the correct action.

2.2 Neuro-Evolution

Up to the late 90s only small neural networks have been evolved by

evolutionary algorithms [14]. According to Yao, a main reason is the

difficulty of evaluating the exact fitness (negative cost) of a newly

found structure: In order to fully evaluate a structure one needs to

1 HTW University of Berlin, Germany, email: siebel@htw-berlin.de
2 University of Kiel, Germany
3 http://glue.rl-community.org/

find the optimal (or, some near-optimal) parameters for it. However,

the search for good parameters for a given structure has a high com-

putational complexity unless the problem is very simple (ibid.).

In order to avoid this problem most approaches evolve the struc-

ture and parameters of the neural networks simultaneously. Exam-

ples are EPNet [15], GNARL [1] and NEAT [10]. EPNet uses a

modified backpropagation algorithm for parameter optimisation (a

local method). Mutation operators for searching the space of neu-

ral structures are addition and deletion of neurons and connections

(no crossover is used). EPNet has a tendency to remove connec-

tions/nodes rather than to add new ones. This is done to counteract

“bloat” (i.e. ever growing networks with only little fitness improve-

ment; called “survival of the fattest” in [2]). GNARL also does not

use crossover during structural mutation. However, it uses an evo-

lutionary algorithm for parameter optimisation. Both parametrical

and structural mutation use a “temperature” measure to determine

whether large or small random modifications should be applied—a

concept known from simulated annealing [6]. In order to calculate

the current temperature, the algorithm needs some knowledge about

the “ideal solution” to the problem, e.g. the best fitness expected to

be reached.

NEAT, unlike EPNet and GNARL, uses a crossover operator that

allows to produce valid offspring from two given neural networks.

It works by first aligning similar or equal subnetworks and then ex-

changing differing parts. Like GNARL, NEAT uses evolutionary al-

gorithms for both parametrical and structural mutation. However, the

probabilities and standard deviations used for random mutation are

constant over time. NEAT also incorporates the concept of specia-

tion, i.e. separated sub-populations that aim at cultivating and pre-

serving diversity in the population [2, chap. 9].

3 THE EANT2 ALGORITHM FOR
NEURO-EVOLUTION

3.1 The Algorithm

EANT2, “Evolutionary Acquisition of Neural Topologies Version 2”,

is an evolutionary reinforcement learning system that realises neu-

ral network learning with evolutionary algorithms both for the struc-

tural and the parametrical part. It is based on the previous method

EANT [5] but uses different algorithms for structural mutation and

parameter optimisation [8]. One main feature of this method, and a

difference to methods like NEAT, is the separation of network pa-

rameter optimisation from the topology optimisation (details below).

EANT2 represents neural networks and their parameters in a com-

pact genetic encoding, the “linear genome”. It encodes the topology

of the network implicitly by the order of its elements (genes). The

following basic gene types exist: neurons, network inputs, biases and

forward connections. There are also “irregular” connections between

neural genes which we call “jumper connections”. Jumper genes can
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(a) Original neural network (b) Network in tree format

(c) Corresponding Linear Genome

Figure 1. An example of encoding a neural network using a linear genome
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Figure 2. The EANT2 algorithm. Please note that CMA-ES has its own

optimisation loop which creates a nested loop in EANT2.

encode either forward or recurrent connections. Figure 1 shows an

example encoding of a neural network using a linear genome. The

figures show (a) the neural network to be encoded. It has one for-

ward and one recurrent jumper connection; (b) the neural network

interpreted as a tree structure; and (c) the linear genome encoding

the neural network. In the linear genome, N stands for a neuron, I

for an input to the neural network, JF for a forward jumper connec-

tion, and JR for a recurrent jumper connection. The numbers beside

N represent the global identification numbers of the neurons, x and

y are the inputs coded by input genes. A linear genome can be inter-

preted as a tree based program if one considers all the inputs to the

network and all jumper connections as terminals.

Linear genomes can be evaluated, without decoding, similar to the

way mathematical expressions in postfix notation are evaluated. For

example, a neuron gene is followed by its input genes. In order to

evaluate it, one can traverse the linear genome from back to front,

pushing inputs onto a stack. When encountering a neuron gene one

pops as many genes from the stack as there are inputs to the neuron,

using their values as input values. The resulting evaluated neuron

is again pushed onto the stack, enabling this subnetwork to be used

as an input to another neuron. Connection (“jumper”) genes make

it possible for neuron outputs to be used as input to more than one

neuron, see JF3 in the example above. Together with bias neurons

the linear genome can encode any neural network in a very compact

format; its length is equal to the number of synaptic network weights.

The steps of our algorithm, shown in Figure 2, are explained in

detail below.

Initialisation: EANT2 usually starts with minimal initial struc-

tures. A minimal network has no hidden layers or recurrent con-

nections, only 1 neuron per output, connected to some or all inputs.

EANT2 gradually develops these simple initial structures further us-

ing the structural and parametrical evolutionary algorithms discussed

below. On a larger scale new neural structures are added to a current

generation of networks. We call this “structural exploration”. On a

smaller scale the current structures are optimised by changing their

parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the cur-

rent EANT2 population are exploited by optimising their parame-

ters. Parametrical mutation is realised using CMA-ES (“Covariance

Matrix Adaptation Evolution Strategy”) [3]. CMA-ES is a variant

of Evolution Strategies that avoids random adaptation of strategy

parameters. Instead, the search area spanned by the mutation strat-

egy parameters, expressed by a covariance matrix, is adapted at each

step depending on the current population. CMA-ES uses sophisti-

cated methods to avoid problems like premature convergence and is

known for fast convergence to good solutions even with multi-modal

and non-separable functions in high-dimensional spaces (ibid.). It

has been first successfully applied to reinforcement learning of neu-

ral network weights by Igel [4].

Selection: The selection operator determines which population

members are carried on from one generation to the next. Our se-

lection in the outer, structural exploration loop is rank-based and

“greedy”, preferring individuals that have a larger fitness. In order

to maintain diversity in the population, it also compares individuals

by structure, ignoring their parameters. The operator makes sure that

not more than 1 copy of an individual and not more than 2 similar

individuals are kept in the population. “Similar” in this case means

that a structure was derived from an another one by only changing

connections, not adding neurons.

Structural Exploration: In this step new structures are generated

and added to the population. This is achieved by applying the follow-

ing structural mutation operators to the existing structures: Adding

or removing a random subnetwork, adding or removing a random

connection and adding a random bias. New hidden neurons are con-

nected to approx. 50 % of inputs; the exact percentage and selection

of inputs are random.

3.2 Comparison with Other Methods

EANT2 is closely related to the methods described in the related

work section above. One main difference to most other methods is

the clear separation of structural exploration and structural exploita-

tion. This means it can be called a “two loop” algorithm (many others

just have one loop). By this we try to make sure a new structural ele-

ment is tested (“exploited”) as much as possible before a decision is

made to discard it or keep it, or before other structural modifications

are applied. Another important difference is the use of CMA-ES in

the parameter optimisation. Further differences of EANT2 to other

recent methods, e.g. NEAT, are the absence of algorithm parameters

that need to be tuned to the problem (the method should be as uni-

versal as possible) and the explicit way of preserving diversity in the

population (unlike speciation). More details on the algorithm and an

experimental comparison to NEAT on a robot learning task can be

found in [9].

One feature of EANT2, as with all “two-loop” algorithms, is that

the structure remains fixed during structural exploitation. During this
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time the network is evaluated thousands of times (depending on the

given task and fitness function, sometimes even millions of times)

before it is changed again during structural exploration. This mo-

tivated us to examine how these many recurring sequences of op-

erations (same sequence of additions, multiplications and activation

function evaluations) on differing data could be sped up.

4 EXPERIMENTS AND RESULTS

In the setup used the goal is to hover in a position for 6000 steps,

each lasting .1 seconds. The EANT2 learning algorithm minimises

the error (maximises the reward) for actions by each of its candidate

solutions, i.e. neural networks with a current set of parameters. The

feedback given to the algorithm is the distance to the desired position

after a new control command it sends out is evaluated in the simu-

lation. A very high error value (10
7) is returned to it on a helicopter

crash, ending the current trial.

4.1 RL-Glue

RL-Glue is a framework for RL tasks [12]. There is a strong separa-

tion between the trainer, running the experiments, the environment,

giving observations (sensor data) and the agent, the learner. The in-

terface of the components is well-defined to enable control and com-

munication between them. All communication in the system routed

through RL-Glue.

4.2 Helicopter/Training Interface

Observation Space: 12 dimensional, continuous valued The interface

to the learning consists of sensor (input) data, action/control (output)

data and the reward, all continuous4:

Input from sensors, 12-dimensional:

• forward, sideways and downward velocity (uerr, verr, derr)

• helicopter position error; x, y and z coordinates (xerr, yerr, zerr)

• angular rate (rotation) around x, y and z axes (perr, qerr, rerr)

• quaternion; x, y and z components (qxerr, qyerr, qzerr)

Output of controller, 4-dimensional:

• pitch angle of rotor, longitudinal and latitudinal (y1, y2)

• main rotor, collective pitch (y3)

• tail rotor, collective pitch (y4)

4.3 Weak Baseline Controller (for Comparison)

One method of control for the helicopter is the “weak baseline con-

troller” by Pieter Abbeel, Adam Coates and Andrew Y. Ng of Stan-

ford University, included in the software package. It determines the

output as follows:

y1 = −wy ∗ yerr − wv ∗ verr − wr ∗ qxerr + wa

y2 = −wx ∗ xerr − wu ∗ uerr + wp ∗ qyerr + we

y3 = −wq ∗ qzerr

y4 = wz ∗ zerr + ww ∗ werr + wc

4 from http://2009.rl-competition.org/helicopter.php
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Figure 3. Error (negative fitness value) over EANT2 generations

with weights wa = 0.02, wc = 0.23, we = 0, wp = 0.7904, wq =

0.1969, wu = 0.0322, wv = 0.0367, ww = 0.1348 wx = 0.0185,

wy = 0.0196 and wz = 0.0513.

This controller performs well, in 500 trials it has always kept the

helicopter in the air, resulting in an error value of 6670.34.

4.4 Fitness Calculation for EANT2

The fitness used internally for maximisation by EANT2 is calculated

once using the errors of the whole episode (all steps of controller,

while in the air) as follows:

f = −

Pn−1

t=0
rt

n
,

where rt is the reward after time step t and n is the number of steps

in the air. The use of the factor n helps to avoid the situation where

a fast crash gives a better fitness than a slow crash, as would be the

case when just using the sum.

The calculations of the reward after the episode means that the

reward is delayed until the whole flight is finished. While this makes

it harder for the algorithm (less data ⇒ it needs more learning steps)

than constant feedback it also helps to determine a good value before

adapting the controller or its parameters.

4.5 Results and Discussion

EANT2 was used with 15 individuals (neural network structures) per

EANT2 generation and a maximum number of 15,000 CMA-ES gen-

erations. Due to computational overhead (interfacing with RL-Glue

through Java) and the complexity of the simulation 7 weeks of com-

putational time resulted in only 9 EANT2 generations. This is the

reason the experiment could only be run once, and these are initial

results only.

The results are seen in Figure 3. The training of EANT2 shows a

considerable improvement, reducing the error considerably in each

generation. Given the delayed reward setup and difficult problem,

we consider this promising. A agent with random weights crashes on

average after 3.18 steps and reaches a fitness value of 3.3·10
6, which

our networks beat after one training steps.

Network sizes are considerable, with 50–60 parameters (synaptic

weights etc.) to be optimised by the algorithm, see Figure 4. It is

encouraging that the fitness of individuals is still improving even with
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Figure 4. Size of networks (number of parameters) over EANT2 genera-

tions

these sizes, which means that EANT2 still works with these large

networks.

One difficulty was that the simulation is non-deterministic. There-

fore a result found after these 9 generations sometimes flies well for

6000 time steps, sometimes it crashes after 8 steps only. In order to

develop controllers more robust to this noise they would need to be

trained more, e.g. by running the simulation more than once per eval-

uation.

5 CONCLUSIONS

We have solved the helicopter flight problem from the Reinforcement

Learning 2009 competition with a neuro-evolution algorithm. This is

unusual and one might argue that this family of algorithms is not ide-

ally suitable for these types of problem settings. However, the initial

results presented here are promising and show that this can, in fact,

work.

A remaining problem is still the computational complexity of the

learning algorithm, although in these particular experiments a lot of

CPU was lost because of the way our C++ code needed to interface

via Java with the RL-Glue environment and the simulation, which is

not designed to be used in such a way.

Future work will focus on faster training possibilities and hope-

fully be able to use a faster framework.
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Evolution of CPN Controllers for Multi-objective Robot 
Navigation in Various Environments 
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Abstract.1This study explores evolutionary training of counter-

propagation neural-networks. It concerns navigating a robot in an 

environment that differs from the trained one. The training of the 

counter-propagation networks is done using a two phase approach to 

achieve tuned weights for both classification of inputs and the control 

function. To diversify trained solutions, and to obtain controllers for 

various scenarios, a multi-objective evolutionary approach is used. 

The numerical simulations, which are reported here, demonstrate the 

ability of the proposed approach to cope with the gap between the 

trained and tested environment. The evolved controllers exhibit 

multi-objective characteristics in both the trained and tested 

environment. This is reflected by the different degrees of path safety 

and attraction to targets, as observed in the results, which are reported 

here 

1 INTRODUCTION 

Evolutionary Robotics (ER) is a general approach to the design of 

robots [1]. Its scope includes not only the evolution of controllers but 

potentially all other components of robots. In many ER studies either 

an Elman or a simple Feed-Forward Network (FFN) is used (e.g., 

[2]). Here we deviate from that trend by using a Counter-Propagation 

Network (CPN). CPN includes a self-organizing (instar) network of 

Kohonen [3] as a first layer and a Grossberg’s outstar net [4] as the 

second one.  Such an approach differs from the common methods, as 

it involves not only the training of a mapping from sensed 

information to actions, but also the organization of the sensed 

information into classes, based on a similarity measure. In CPN, The 

later aspect is handled by the Kohonen's self organizing layer, 

whereas the former is accomplished by the Grossberg second layer.  

It is noted, surprisingly, that CPN has not been used in ER studies 

(to the best of our knowledge). To employ CPN in an evolutionary 

context we had to devise a special training approach. The purpose of 

the training is to find Neuro-Controllers ( NCs) that can navigate the 

robot in a navigation problem and environment, which differ from the 

trained one.  

In robot navigation, evolutionary training of NCs is often defined 

as a single objective problem (e.g., [2]). In contrast to multi-objective 

problems, solving a single-objective one typically produces one 

optimal behavior rather than diverse behaviors. In the last decade, 

with the availability of Multi-Objective Evolutionary Algorithms 

(MOEAs), e.g. [5], several Multi-Objective ER (MO-ER) studies 

employed MOEAs to obtain Pareto-optimal NCs based on 

contradicting objectives (see a review in [6]). The usefulness of 
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diversity, as obtained by a multi-objective approach, has been 

recently demonstrated, in [7] and [8], for the bootstrap problem that is 

common in single objective ER. Such studies suggest that reaching 

diverse behaviors for one problem may produce useful (initial) 

solutions for another problem. The motivation to use a multi-

objective approach is two-fold. First, as in [7] and [8], it provides 

diversity, which may help coping with numerical problems. The 

second, as in [6] and similar studies, it provides useful controllers for 

different scenarios. In particular, similar to [6], we use here the trade-

off between safety and target-attraction to produce a diversity of 

controllers, with remarkable different behaviors.  

To obtain NCs for diverse behaviors one may use various 

methods. With a repeated use of the common single objective 

approach, with a new objective at each independent search, one may 

expect to find a set of different NCs. However, due to the 

substantially different objectives, this approach is expected to 

produce behaviors which are drastically different from one another. 

Alternatively, one may employ weighted sum of objectives, with a 

gradual change of objective preferences, or a Pareto-approach. The 

later techniques can be used to simultaneously produce diverse 

solutions with gradual changes. Here we employ NSGA-II, a well 

known MOEA, [5], as the evolutionary search mechanism to obtain 

Pareto-based diversity. The obtained solutions are expected to 

support coping with future shifts from one environment/problem to 

the other. It is noted that due to the use of CPN for the NCs, the 

algorithm employs NSGA-II in two separated phases.   

Our use of a CPN is motivated by a claim, which has been raised 

in [9]. It is argued there that for complex environments, such as dealt 

with in [9], a semi-manual modular approach is required. The 

aforementioned approach involves separate trainings of several 

simple neural networks on several simple environments. We postulate 

that the use of a CPN, backed with multi-objective search, may help 

reducing such a requirement. In the current study we do not attempt 

to substantiate such a claim. Rather, given the infancy of using CPN 

in ER, we restrict our focus to a description of the proposed multi-

objective training of CPNs, and to demonstrating its applicability in 

dealing with particular environments, which are adopted from the 

study in [9].  

The rest of this paper is organized as follows. The background, in 

section 2, provides some references and details relevant to the 

foundations of our approach. It is followed by a methodology, in 

section 3, which describes the details of the current search approach 

for the Pareto-optimal CPN-NCs. The methodology is continued with 

descriptions of the trained and tested environments. The results of the 

numerical simulations are presented in section 4. Finally, the 

conclusions from this study are provided.  
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2 BACKGROUND 

2.1 General 

 
Algorithms in ER frequently operate on populations of candidate 

controllers (or individual robots) that are initially selected randomly. 

This population is then repeatedly modified to reach optimality 

according to an objective function, or functions. To study the possible 

use of CPN in the context of ER, we followed the simulation details 

of the robot kinematics, and multi-objectives, of [6], while using 

environments as in [9]. We note that many ER researchers amend 

simulation with actual testing [1]. According to [1], there appear to be 

particular advantages in combining simulated, training phase 

evolution with lifelong adaptation by evolution on a physical robot. 

Here, we concentrate on a simulation-based study. Such a study is 

currently sufficient for demonstrating the applicability of CPN to the 

environment in question. By applicability we mean producing a 

simulation-based initial population of NCs. Such solutions may be 

considered as candidates for use, with adaptation, in actual testing, 

which is likely to be required for coping with un-modeled aspects of 

the simulation. 

Most of the early and late studies in ER have not attempted to 

study contradicting objectives. There have been only a few such ER 

studies, which deal with the simultaneous optimization of separate 

objectives [6]. The following sub-section provides some relevant 

background to this type of optimization and its solution by MOEAs.  

2.2 Pareto-optimality 

Pareto-based search deals with finding the Pareto-optimal set, or its 

numerical approximation, using dominance relation (see below). The 

Pareto-optimal set includes non-dominated solutions from the 

feasible search space given no a-priori preferences on a finite set of 

objectives which are contradicting. In the following definition the 

symbol <  stands for < and for > in minimization and in 

maximization, respectively. It denotes better than and is used 

between two solutions to denote that one solution is better than the 

other in a certain objective,  denotes that solution u is better 

than solution v in a particular objective.  

 

Definition 1 (Dominance): A solution  is said to dominate 

solution  (((((((((((((((((((((((( ) if both conditions 1 and 2 are satisfied: 

 

1. The solution  is no worse than  in all n 

objectives, or   for all j=1 ,2 ,..n 

2. The solution   is strictly better than  in at least 

one objective, or  for at least one 

 

Definition 2 (The global Pareto-optimal set):  Among the feasible 

solutions, the Pareto Set is the set of solutions P' which are not 

dominated by any other member of the feasible solution space. 

 

The Pareto-front is the set of performance vectors in objective 

space of all solutions of the Pareto-optimal set. For the Pareto-based 

evolution we have used NSGA-II [5]. Due to the permutation 

problems the use of a genetic algorithm is not recommended for the 

evolution of neural-networks [10]. Hence, as pointed out in [6], 

NSGA-II may not be the most optimal search algorithm for NCs, and 

a modified version, as used in [6], may be better. Yet NSGA-II 

proved to be useful for our current demonstration purposes. 

2.3 Counter-Propagation Networks 

CPNs are NNs which differs from FFNs as explained in the 

introduction. The original idea of mixing Kohonen and Grossberg 

layers is attributed to Hecht-Nielsen [11]. While a promising concept, 

their use is not as common as that of FFNs. With increasing interest 

in cognitive robotics, the type of training should shift, from simple 

behavior-based mappings of sensors to actuators, to more complex 

approaches. CPNs are one such possibility, which has not been 

investigated in the context of ER. The advantage of using CPNs is 

that, once trained, they provide knowledge about the environment in 

the form of input classes. In regular training of CPNs there are two 

phases. The first is to cluster the inputs, and the second is to create a 

mapping by the use of a supervised approach. The unsupervised 

learning, in the Kohonen self organizing layer, is commonly based on 

neighborhood functions. This means that weight adjustments are done 

not only for the winner neuron but also to its neighboring units [3]. 

Due to the lack of a supervisor in ER, and due to the learning by 

interactions with the environment, there is a need to re-examine 

existing CPNs learning algorithms. In particular, there is a need to 

investigate various alternatives to the evolutionary training of CPNs, 

and to compare it with other approaches. Here, we suggest and 

describe one possible pseudo-code that can be used either with a 

single objective ER or for MO-ER.   

3 METHODOLOGY 

3.1 Simulated Robot 

The robot model is based on the miniature 5.5 cm diameter Khepera 

robot, as in [2], with the following modifications. A total of 16 

simulated sensors is used. Eight simulated IR sensors identify 

obstacles (walls) and the others identify targets. The sensors are 

located, as pairs of an obstacle and a target sensor, at eight locations 

as shown in figure 1.  

All simulated IR sensors have the same characteristics. The max 

range of any IR sensor is 5cm and its span angle is 60 (shown for the 

two front sensors).  The target sensors have a narrower span of 300 as 

shown for one of them. The max range of the target sensor is 

simulated to be 100cm, which ensures target sensing anywhere in the 

maze. The sensors do not have a "blind range," and their output range 

is [0, 1]. The zero represents an object found at the max range, and 

the one is for the case when the sensed object is at the robot 

periphery. In the current implementation no noise is added to the 

simulated sensors, which is left for future research.  
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Figure 1.  Robot and sensors 

 

The simulated robot model converts motor commands on 

rotational speeds of the robot wheels from the outputs of the NNs into 

simulated robot motions. The range of the wheel speeds scaled into 

the range [-0.5, 0.5]. The wheels radius is taken as 1cm. The time-

step of the simulation set to 5sec, and the robot moves 2.5cm per step 

at maximum speed). 

3.2 Trained and tested environments 

Both the trained and tested environments, which are depicted in 

figures 2 and 3 respectively, are based on environments used in [9].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Trained environment 

 

 

 

 

 

 

 

 

 

 

 

        

Figure 3.  Tested environment 

 

According to [9], the trained environment concerns nine different 

types of robot situations such as a wide corridor, a narrow corridor, 

the need to turn right/left, pass freely without walls, etc. In contrast to 

[9], our approach does not use separated simple environments for a 

semi-manual training. Rather, we use the complex environment 

directly for a non-manual evolutionary training. 

For the learning process, we use several targets that the robot 

should reach. The targets are designed to specific positions including: 

(90.0, 6.0), (67.5, 6.0), (60.0, 15.0), (60.0, 42.0), (90.0, 45.0), (70.5, 51.0), 

(60.0, 19.5), (90.0, 15.0), (75.0, 30.0), (51.0, 15.0), (45.0, 40.5), (30.0, 55.5), 

(3.0, 45.0). These are shown, using dots, in figure 2. Spreading the 

targets aims to create an evolutionary pressure towards the different 

regions of the maze. In addition, we allocated a place in the maze 

with no targets. This supports simulating areas that are less desirable 

to be reached. For training we have used four different robot start-

points located at (95, 5), (95, 45), (15, 5), (15, 45). In the two left 

points the robot is facing towards the right and vice versa. 

In order to check the generality of the NCs, it is tested with an 

unknown environment. The tested environment, which is depicted in 

figure 3, is also based on [9]. For the testing case, the robot start point 

is at (5, 55) and it is facing right. The target point, for the tested case, 

is at (80, 10). 

3.3 Simulated neuro-controllers 

The simulated NCs maps sensors' information (input) into appropriate 

motor commands (output). The simulated CPN has two layers: the 

input layer connects the 16 sensors to a hidden layer. The hidden 

layer has 9 neurons that connect to two neurons in the output layer 

(motor commands). The reason of using a hidden layer of 9 neurons 

is that we try to compare it with the MNN (Modular-Neural-

Network) of [9]. The 9 neurons follow the 9 classifications used in 

[9]. We use a 163 length vector to define each NC. This is based on: 

16 weight inputs multiply by 9 neurons in the hidden layer + 9 weight 

neurons multiply by 2 outputs neurons. An additional weight is used 

to determine the slope of the sigmoid for the activation functions. No 

bias weights are used. In the current implementation of the CPN it 

has been observed that there is no need to adjust the weights of 

neighboring neurons, hence only the weights of the winner are 

adjusted. 

3.4 Objective functions 

Two fitness functions are used (marked as F1, F2). The details are 

similar to [6]. The first function F1, which is based on [2], aims at 

fast and straight motions with obstacle avoidance without any 

specific destination. F1 is given as follows: 
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· V is the absolute value of the sum of the rotational speeds 

of wheels. V is high when the robot is moving fast (forward 

or backward). 

· vD
 
is the absolute value of the difference between the 

wheel speeds.   vD-1  is high when the robot is moving 

straight without making any turn during the step. 

·  I
  
is the normalized activation value of the sensor with the 

highest value.  I is high if the sensors perceive an obstacle. 

 

F1 is calculated as an average over the maximum allowable 

number of steps of the accumulated score. The accumulation, 

however, is over the actual number of steps which are performed over 

a run of any particular NC. The function can have any value between 

0 and 1, with the aim to be maximal. The second objective, F2, 

concerns reaching targets (e.g., food-targets). Similar to F1, F2 is 

based on averaging of performances over the maximum allowable 

number of steps of the process, and summing over the actual number 

of steps. This reduces scores to non-moving robots at the training 

phase. Once a target is touched by the robot, it is eliminated 

(consumed). After the robot finishes touching all targets, they re-

appear. Then the process of reaching targets continues as long as the 

robot does not reach a maximum allowable number of steps.  F2 is 

defined as follows: 
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Where: 

· d is the distance from our robot to the nearest target among 

the remaining targets at the current step. 

· H is the score that the robot gets when it reach a target. It is 

set to 50 in the current implementation. 

 

F1 and F2 follow [6], where it is shown that these are 

contradicting. It is noted however, that the application in [6] is 

substantially different from the current one. In particular, in [6] there 

has been no separation between the trained and tested scenarios as 

done here, and no target sensor were used.  

The above objective functions are good for measuring 

performance with infinite loop of targets that re-appear. Here there is 

a need to adapt the performance evaluations for the tested case. In 

that case, our interest is in reaching only one target.. We reformulated 

F1 and F2 for the tested case as follows: 

3.5 Evolving CPN 

Training a CPN requires special care due to the existence of two 

separated training issues. The first is to produce a classification of 

inputs, whereas the second is to produce an optimal model of 

mapping the classified input into optimal outputs. It is noted that the 

first issue is in essence independent from the second one. It 

constitutes an organization of expected inputs into classes regardless 

of the expected use of the classes.  

In the current application, the optimality measures are integrative, 

and performance evaluations are based on sequences of interactions 

with the environment. Hence, the difficulty is three-fold. There is a 

need to handle both the two separated issues of the training as well as 

the integrative nature of the evaluation. To overcome these 

difficulties we propose a two-phase evolutionary search. The pseudo-

code is schematically presented in figure 4, and described below. 

The separation between the two search phases can easily be 

spotted in figure 4, where the 1st phase involves the left side and vice 

versa. The primary goal of the 1st phase is a step-wise updating of the 

Kohonen layer based on steps of interactions with the environment. 

Yet, it also contains the evolution of weights of the Grossberg layer 

as described under interact # 1a and # 1b.  The primary goal of the 2nd 

phase is to further adjust the weights of the Grossberg layer while 

fixing the Kohonen layer as resulted in phase 1. The various blocks of 

the pseudo-code of figure 4 are described below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Pseudo-code Description 
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It is noted that the proposed pseudo-code can be used for both 

single and multi-objective problems. This depends on the type of 

evolutionary search algorithm used in the blocks "Run EA#1 and #2 

of figure 4.    

 

Initialization:  

At the beginning of the search, a random population is initialized 

with N individuals. In our application each individual is a CPN-based 

NC with a fixed structure, were both weights of the Kohonen layer 

and weights of the Grossberg layer are sought.  

 

Make Groups:  

In our study we have found that dividing the population into 

groups is beneficial for the 1st phase. Four groups are used in the 

current study, corresponding to the four start-points of the trained 

environment, as described in the previous section. At each 

generation, individuals from the same group are trained from the 

same start-point. During the 1st phase individuals evolve only within 

the group. In our study we set N=56 to be divided into four groups, of 

14 individuals each, for the 1st phase. 

 

Termination Group: 

This criterion is used to terminate the 1st phase of the algorithm 

after the completion of the evolution of the four groups.  If there is a 

group that has not evolved, it is forward to Termination Criterion #1.  

 

Termination Criterion # 1:  

This criterion is used to terminate the evolution of a group. In our 

study maximal number of generations is used (50 generations per 

group).  If the group evolution has not reached that number, the 

individuals of the group proceed to interact # 1a. 

 

Interact # 1a and 1b:  

At each generation each individual performs two consecutive 

sequences of interactions with the environment, both starting at the 

corresponding start-point of its group. The purpose of the 1st 

sequence (Interact # 1a) is to update the weights of the Kohonen 

layer. These updates are done at each step of the sequence. The 

updates form Interact#1a are used for the next sequence. In the 2nd 

sequence (Interact # 1b) no weight update is done during the 

sequence of interactions with the environment. The purpose of the 2nd 

sequence is to obtain the performances F1 and F2 of the individual 

NC based on the updated version of the Kohonen layer. Each robot 

finishes the interaction either due to an obstacle or by using a pre-

defined number of steps (200 steps in the current implementation)   

 

Evaluate Group:  

This step performs the calculation of F1 and F2 for each individual 

NC based on the accumulated scoring during Interact # 1b.  

 

Run EA # 1:  

This part of the algorithm can be based on existing evolutionary 

algorithms. In the current implementation the search is for the Pareto-

optimal set and front using NSGA-II based on [10]. The results 

include offspring population to be evaluated in the next iteration. 

During this evolutionary stage weights of the Grossberg layer are 

tuned, whereas the Kohonen layer is kept fixed (no crossover or 

mutation). For recombination in the Grossberg layer we used 100% 

probability. As typically depicted in figure 5, we employed:  

(Wyd',Wya')=SBX(Wyd,Wya); (Wzd',Wza') = SBX(Wzd,Wza). The 

mutation in the Grossberg layer is done with polynomial mutation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Mating and mutating CPNs 

 

Once the 1st phase of the search is terminated, the 2nd one is 

starting with a new counting of the generation number, and with a 

new termination criterion. The 2nd phase includes: 

 

Re-combine Groups: 

The groups used in the 1st phase are no longer needed, and the 

entire population is allowed to mate with any individual regardless of 

the original groups. 

 

Termination criterion # 2: 

This criterion is used to terminate the second phase of the 

algorithm. In our study a maximal number of generations is used 

(currently 250).   

 

Interact # 2:  

In contrast to the corresponding function of the 1st phase, here no 

classification updates are done during the performance of the 

sequence of interactions (similar to Interact #1b).  

 

Evaluate Pop:  

This step performs the calculation of F1 and F2 for each individual 

NC from the entire population (merged groups) based on the 

accumulated scoring during Interact # 2.  
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Run EA # 2:  

This stage, which is depicted in figure 5, is similar to EA #1. 

However, the crossover operation used here is different from that 

used in EA#1. Here crossover includes a procedure that performs 

changes both to the Kohonen layer and to the Grossberg layer. The 

Kohonen layer of an offspring is based on a random selection of units 

from the parents. This means that the Kohonen weights are 

transferred "as are" with each inherited neuron. In addition the 

Grossberg weights of the offspring results from SBX crossover of the 

weights from the parents. With respect to figure 5, the recombination 

of the Kohonen layer involves switching unit A with unit D, etc. No 

mutation used here. In addition crossover is carried out in the 

Grossberg layer. For example: (Wyd',Wya')=SBX(Wyd,Wya); 

(Wzd',Wza')=SBX(Wzd,Wza). The mutation for the Grossberg layer 

is done with polynomial mutation. 

4 EXPERIMENTAL STUDY 

4.1 Trained solutions 

Figure 6 depicts results from 30 different training runs. One front is 

shown for each run. Each front is depicted by using the same shape 

and color for all performance vectors of the front. The horizontal and 

vertical axes are F1 and F2 respectively. As clearly observed from the 

fronts there is a strong scatter, namely the repeatability of the fronts is 

poor. This phenomenon is due to the definition of the objective 

functions, and not to the training scheme. It appears as a local Pareto 

problem, but due to the large dimension of the search space it is hard 

to explore it in-depth. This means that a large number of runs would 

be required to increase the confidence on reaching the global front. 

Yet, due to lack of an analytical solution, the best front obtained is 

always just a guess. For the purpose of this study we are interested in 

satisficing solutions. Hence this phenomenon is acceptable here. In 

fact, the best front that is accumulated, using dominance relation 

among all 30 fronts of the different runs, has been sufficient for the 

purpose of this study. As described in the rest of this section, the 

obtained NCs, which are associated with the accumulated front, are 

satisfactory for the tested environment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Pareto-fronts 

 

Figure 7 shows the path, with 200 steps, which is associated with 

the NC with the best F1 performance. This has the performance 

vector of F1=0.7879 and F2= 1.3104. In contrast, figure 8 depicts the 

path using the controller with the best F2 (F1=0.5435, F2= 3.0884). 

When observing figure 7, recall that the concept behind this 

controller is to have a safe-straight moving robot with maximal 

speed, on the expense of a reduced target collection abilities. This 

means that the robot is expected to be attracted to spacey areas, where 

it can move straight and far from obstacles, rather than to the targets. 

The shown path clearly avoids narrow areas where most of the targets 

are. The best F1 controller "prefers" using the available steps on the 

larger, hence safer, yet empty room. Comparing the path of figure 8 

with that of figure 7, it becomes evident that the best F2 controller is 

much less safe as it runs the robot into narrow places, while striving 

to reach all targets. As shown in the rest of this section, the nature of 

these controllers is observable also in the tested environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Path of the best F1 controller 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Path of the best F2 controller 

4.2 Tested solutions 

The tested environment is designed to be substantially different from 

the trained one. This can easily be observed from figures 2 and 3. It 

should be noted that the tested problem differs from the trained one 

not just by the structure and shape of the walls, but also by the target 

setting. Here we aim at reaching only one target from a far location. 

Figures 9 and 10 show the obtained paths using the controllers with 

best F1 and best F2 respectively.   

Both paths start at the upper left point, inside the narrow corridor. 

Both controllers cope well with this challenge. The safest controller 

of figure 9 shows "less confidence," inside the corridor.  It attempts 

to avoid walls (behave as safe as possible), while trying to be fast. 

Apparently, this results in an unstable behavior.  The less safer and 

potentially slower controller, of figure 10, shows a more stable 
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behavior inside the corridor. When reaching the end of the corridor 

both controllers keep moving in a similar fashion till facing with the 

rectangular obstacle. At that point the safer controller, of figure 9 
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Figure 9.  Path of the best F1 controller (test) 

 

avoids entering the narrow space between the rectangle and the side 

wall. It turns into the relatively spacey zone but still is drawn towards 

the target which is located at the lower left side of the environment. 

Both controllers eventually reach the target. Yet the less safer one 

reached it in a much shorter, but less safer way, as compared with the 

other one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Path of the best F2 controller (test) 

  

4.3 Performance vs. generation 

In this section of the numerical studies we are interested in a 

demonstration of the benefit of having an initial population of NCs 

that have been trained on the 1st environment for the purpose of 

finding optimal solutions for the 2nd environment. For this purpose, 

we have used the accumulated Pareto-optimal set of the 1st 

environment, as opposed to a random population of the same size. 

The first population is termed pre-trained population and the second 

is termed random. Both include 46 individuals. Next we use these 

two populations as initial populations to be trained on the 

environment and problem of figure 3, with the target and start point 

as in the tested case of figures 9 and 10 (no division to groups). At 

each generation of each separated run we record the current best F1 

and best F2. Figures 11 and 12 respectively show the F1 and F2 

performance improvement over generation. 

  

 

 

 

 

 

 

 

Figure 11.  F1 performance over generations – Pre-trained vs. Random 

 

Each figure compares the performance in one objective and contains 

two curves. The first, marked by the green (dashed) curve, is of the 

random NCs. The second, marked by the blue (continues) curve, is of 

the pre-trained NCs.  As expected the pre-trained controllers are 

much superior. In fact, they appear to be optimal from the start, 

which is counted after the first phase of the training at 50 generations 

(the graphs present the 300 generations as summed from the 2 phases 

(50+250)).  

 

  

 

 

                 

 

 

 

 

 

 

 

 

Figure 12.  F2 performance over generations - Trained vs. non-trained 

 

5 CONCLUSIONS 

The main conclusion of this study is that counterpropagation 

networks coped well with the problem of evolving controllers for the 

multi-objective navigation problem used here. In particular, the 

ability to generalize from the trained environment to the tested one 

seems promising. This should be evaluated with respect to the semi-

manual approach of [9], which has been used for the same 

environments.  

As noted in the introduction, this study appears to be the first to 

employ CPNs for ER applications. As such, the primary focus is on 

the demonstration of the proposed algorithm, rather than on its 

optimization and comparison with other methods.  

Much work is left for future studies on the methodology and 

computational aspects of evolving CPNs as compared with current 

approaches. Systematic study is still needed to explore the full power 

of the proposed method. Future studies should deal not only with a 

systematic comparison with current ER approach, but also include 
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other issues such as: (a) exploitation of the proposed scheme for more 

challenging problems, (b) actual implementation in physical 

environments. Of a particular interest will be the understanding of the 

obtained classes of inputs and their meaning and influence on the 

results. 

In addition to dealing with the evolution of CPN-based NCs, this 

preliminary study concerns the use of MOEAs in ER. The 

demonstrations provided here show that the multi-objective "nature" 

of the examined controllers is kept also in the tested problem. Future 

studies should explore the advantage of the proposed method both for 

single and multi-objective problems. 
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