
The 19th European Conference on Artificial Intelligence (ECAI 2010)

Proceedings of the

3rd International Workshop on
Evolutionary and Reinforcement Learning

for Autonomous Robot Systems
(ERLARS 2010)

Monday, August 16 2010
Lisboa, Portugal

Nils T Siebel, Josef Pauli and Yohannes Kassahun

http://www.erlars.org/



Proceedings of the 3rd International Workshop on Evolutionary and Reinforcement Learning
for Autonomous Robot Systems (ERLARS 2010)

Editors: Nils T Siebel, Josef Pauli and Yohannes Kassahun

ISSN 2190-5576 (Print)
ISSN 2190-5746 (Internet)

Published and Printed by
Nils T Siebel
Wilmsstr. 5

10961 Berlin
Germany

1st Edition, August 2010

ii



Table of Contents

A Message from the Chairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.  v

Organisation of the ERLARS 2010 Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. vii

Learning Adaptive Navigation Strategies for Resource-constrained Systems
Armin Hornung, Maren Bennewitz, Cyrill Stachniss, Hauke Strasdat, Stefan Oßwald and
  Wolfram Burgard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.  1

Locomotion Gait Optimization for a Quadruped Robot
Miguel Oliveira, Cristina Santos, Manuel Ferreira, Lino Costa and Ana Rocha . . . . . . . . . . . . . p. 11

Evaluating Reinforcement Learning Methods for Robot Navigation in Home
  Environments
Ruben Gerlach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 17

About the Evolution of Neural Control for Walking Machines
Jörn Fischer and Thomas Ihme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 25

Offline and Active Gradient-based Learning Strategies in a Pushing Scenario
Sergio Roa and Geert-Jan Kruijff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 29

Fitted Policy Search: Direct Policy Search using a Batch Reinforcement Learning
  Approach
Martino Migliavacca, Alessio Pecorino, Matteo Pirotta, Marcello Restelli and Andrea
  Bonarini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 35

Using only Aspects of Interaction to Solve Shared Attention
Renato Ramos da Silva and Roseli Aparecida Francelin Romero . . . . . . . . . . . . . . . . . . . . . . . . p. 43

Sub-Rationality and Cognitive Driven Cooperation
José Ferreira de Castro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 53

A Heuristic Strategy for Learning in Partially Observable and Non-Markovian
  Domains
Matteo Leonetti and Subramanian Ramamoorthy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 59

iii



 

iv



A Message from the Chairs

We  would like to welcome you to the 3rd International Workshop on Evolutionary and Rein
forcement Learning for Autonomous Robot Systems, ERLARS 2010, held in conjunction with the 
ECAI 2010 conference in Lisboa, Portugal on August 16 2010.

The ERLARS workshop is concerned with research on efficient algorithms for evolutionary and 
reinforcement learning methods to make them more suitable for autonomous robot systems. 
The long term goal is to develop methods that enable robot systems to learn completely, dir
ectly and continuously through interaction with the environment.   In order to achieve this, 
methods are examined that can make the search for suitable robot control strategies more 
feasible for situations in which only few measurements about the environment can be obtained.

The articles  contained in these proceedings are steps along this way.  We hope that they can 
serve as a useful set of ideas and methods to achieve the long term research goal.  In order to 
give researchers a chance to discuss their work at an early stage this proceedings volume also 
includes short papers / research statements.

We would like to thank the program committee members who provided very good and helpful 
reviews.  We are also especially indebted to the authors of the articles sent to this workshop for 
providing the material to make us think and discuss.

It has been a great pleasure organising this event and we are happy to be supported by such a 
strong team of researchers.  We sincerely hope that you enjoy the workshop and we look for
ward, with your help, to continue building a strong community around this event in the future.

Nils T Siebel, Josef Pauli and Yohannes Kassahun, Chairs, ERLARS 2010 Workshop.

v



 

vi



Organisation of the ERLARS 2010 Workshop

Workshop Chairs

Nils T Siebel
Building Automation Lab
Department of Engineering I
HTW University of Applied Sciences
Berlin, Germany 

Josef Pauli
Intelligent Systems Group
Department of Computer Science
University of Duisburg-Essen
Duisburg, Germany

Yohannes Kassahun
Research Group Robotics
DFKI Lab Bremen
University of Bremen
Bremen, Germany 

Programme Committee

Andrew Barto, Autonomous Learning Laboratory, University of Massachusetts Amherst, USA.
Peter Dürr, Laboratory of Intelligent Systems, EPFL Lausanne, Switzerland.
Christian Igel, Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany.
Takanori Koga, Computational Brain Science Laboratory, Yamaguchi University, Japan.
Tim Kovacs, Department of Computer Science, University of Bristol, UK.
Jun Ota, Graduate School of Engineering, University of Tokyo, Japan.
Jan Peters, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Daniel Polani, Department of Computer Science, University of Hertfordshire, Hatfield, UK.
Marcello Restelli, Artificial Intelligence and Robotics Laboratory, Politecnico di Milano, Italy.
Stefan Schiffer, Department of Computer Science, RWTH Aachen University, Germany.
Juergen Schmidhuber, Swiss AI Lab IDSIA, Lugano, Switzerland.
Sergiu-Dan Stan, Technical University of Cluj-Napoca, Romania.
Jeremy Wyatt, School of Computer Science, University of Birmingham.

vii



 

viii



Learning Adaptive Navigation Strategies
for Resource-constrained Systems

Armin Hornung1 and Maren Bennewitz1 and Cyrill Stachniss1

and Hauke Strasdat2 and Stefan Oßwald1 and Wolfram Burgard1

Abstract. The majority of navigation algorithms for mobile robots

assume that the robots possess enough computational or memory

resources to carry out the necessary calculations. Especially small

and lightweight devices, however, are resource-constrained and have

only restricted capabilities. In this paper, we present a reinforcement

learning approach for mobile robots that considers the imposed con-

straints on their sensing capabilities and computational resources, so

that they can reliably and efficiently fulfill their navigation tasks. Our

technique learns a policy that optimally trades off the speed of the

robot and the uncertainty in the observations imposed by its move-

ments. It furthermore enables the robot to learn an efficient land-

mark selection strategy to compactly model the environment. We

describe extensive simulated and real-world experiments carried out

with both wheeled and humanoid robots which demonstrate that our

learned navigation policies significantly outperform strategies using

advanced and manually optimized heuristics.

1 INTRODUCTION

Completing navigation tasks reliably and efficiently is one of the

most essential objectives for an autonomous robot. As a precondition

for finding the way to a target location, the robot needs to know its

pose in the environment. Especially in the case of small robots with

a limited payload, such as humanoids or unmanned aerial vehicles,

compact and lightweight cameras are often the only available sen-

sor for navigation. However, the movements of a mobile robot typi-

cally introduce motion blur in the acquired images, with the amount

of degradation depending on camera quality, on the lighting condi-

tions, and on the movement velocity. Figure 1 depicts two images of

patches of a wooden floor recorded with a downward-looking cam-

era on a wheeled robot and a humanoid robot walking through the

same corridor. As can be seen, the movements of the robots intro-

duce substantial motion blur to the image, which in practice will lead

to a considerable reduction of the accuracy of the position estimation

process. While there are methods to reduce the influence of motion

blur [22] or limit image acquisition to stable phases of a gait [13], the

degradation introduced by motion blur usually cannot be completely

eliminated by filtering techniques and cheap cameras typically do

not allow for an exact synchronization to the controllers executing

the motor commands or the walking gait.

Additionally, small humanoids or unmanned aerial vehicles are

often resource-constrained and possess only limited computational

power. For truly autonomous navigation in initially unknown envi-

ronments, however, the robot has to solve the so-called simultaneous

1 Dept. of Computer Science, University of Freiburg, Germany
2 Department of Computing, Imperial College London, UK

Figure 1. An indoor floor patch observed by a wheeled robot moving at
0.4 m/s (left), and by a walking humanoid robot (right). Significant motion
blur is introduced in the captured images, degrading their quality for feature

detection.

localization and mapping (SLAM) problem. This is computationally

demanding and the memory requirements increase with the num-

ber of landmarks that need to be maintained by the robot. In prac-

tice, there are many scenarios in which the number of visible land-

marks during a navigation task is significantly larger than the number

of landmarks that can be processed efficiently on an embedded de-

vice. This leads to the question which landmark should be stored and

maintained by the robot to optimally solve the navigation task.

In general, the goal of the robot is to accomplish its task as fast

as possible. However, as faster movements may introduce a higher

uncertainty in the pose estimate due to the decreased reliability of

the sensor data, they increase the risk of not being able to accom-

plish the mission. In principle, the robot therefore has to determine

the movement speed that provides the optimal trade-off between the

time needed to reach a designated target location and the risk of a

positioning failure. Such questions often arise on systems with lim-

ited computational resources. The systems are usually not able to

incorporate all the information into the state estimation processes

which introduces a corresponding information selection problem. In

this paper, we present a general approach towards learning optimal

policies for systems with limited computational or perceptional ca-

pabilities, which at the same time are efficient and lead to reliable

navigation behaviors. We use reinforcement learning (RL) to learn

which navigation actions to execute so as to reach the destination re-

liably and efficiently. At each time step, the robot decides whether it

should decrease the velocity or even stop to increase the quality of

its perceptions or to continue moving towards the goal. In previous

publications on vision-based navigation with wheeled and humanoid

robots [9, 10, 21], we discussed the key concepts of our approach.

Besides the localization problem, we investigate in this work how

reinforcement learning can be used to decide which landmark to in-

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

1



tegrate during navigation without a known map [28]. We present ex-

periments carried out in simulation and with real wheeled and hu-

manoid robots and demonstrate that the learned policies significantly

outperform manually optimized strategies and also techniques using

advanced heuristics.

This paper is structured as follows. We first give an overview over

related work in Sec. 2, followed by the background about state esti-

mation and reinforcement learning in Sec. 3. Sec. 4 details our learn-

ing approach. Finally, in Sec. 5 we present the experimental results.

2 RELATED WORK

In the last few years, various frameworks have been presented which

employ active methods in the context of localization and naviga-

tion. Kollar and Roy [15] use reinforcement learning to optimize the

robot’s trajectory during exploration. Similar to our approach, the au-

thors learn optimal parameters of the navigation controller. While we

consider the problem of reaching the destination reliably and as fast

as possible, Kollar and Roy learn the translational and rotational be-

havior which minimizes the uncertainty in SLAM (simultaneous lo-

calization and mapping). Huynh and Roy [12] generate control laws

by combining global planning and local feedback control to obtain

trajectories which minimize the pose uncertainty during navigation.

Cassandra et al. [5] introduced dual-mode controllers as heuristics

for POMDPs. A threshold on the entropy as a measure of the uncer-

tainty determines whether a greedy action or an action reducing the

uncertainty is selected.

A different method of minimizing the uncertainty about the state

of the robot is to plan a path for the robot which takes the information

gain into account. A popular approach in this context is the so-called

coastal navigation introduced by Roy et al. [23]. Recently, He et

al. [8] have applied this technique to a quadrotor helicopter for indoor

navigation with a short-range laser range finder.

Michels et al. [18] proposed to learn a control policy for high

speed obstacle avoidance of a remotely controlled car. Based on

depth estimation with a monocular vision system, steering directions

are learned. The authors focus on obstacle avoidance whereas we

consider the effect of fast movements on the observation quality and

adapt the speed accordingly. Kwok and Fox [16] apply reinforcement

learning to increase the performance of soccer-playing robots by ac-

tive sensing. In their approach, the robot learns where to point its

camera to localize relevant objects.

Bennewitz et al. [3] developed a localization method based on vi-

sual features and presented experiments with a humanoid robot. The

authors mentioned the impact of motion blur on feature extraction,

but did not address the problem specifically. Instead, their robot in-

terrupted its movement at fixed intervals to make observations. To

overcome the problem of motion blur in the context of humanoid

robots, Ido et al. [13] explicitly consider the shaking movements of

the head while walking and acquire images only during stable phases

of the gait.

Pretto et al. [22] proposed an additional image processing step

prior to feature extraction, in particular for humanoid robots. The au-

thors estimate the direction of the motion blur for image patches and

present a novel feature detection and tracking scheme. While their

approach increases the matching performance, motion blur cannot

be completely removed by filtering. However, such a pre-processing

technique could be easily combined with our learning approach to

further improve the navigation performance of the robot.

Miura et al. [19] presented a method for adaptive speed control

in partially unknown environments. In this approach, the velocity is

chosen to be as fast as possible while still being safe in the sense

that potential collisions with obstacles are avoided. The authors use

heuristics which depend on the distance of the robot to unexplored

areas and empirically determined safety margins around obstacles.

In this paper, we do not only investigate the ability to localize a ve-

hicle but also to build maps under constraint settings. The standard

method for SLAM relies on the extended Kalman filter (EKF) [6] or

its variants such as the unscented Kalman filter (UKF) [14]. Using

these approaches, the computational requirement and memory de-

mand increase at least quadratically with the number of landmarks

since the full correlation between the position of all landmarks is

taken into account. There are many approximative filtering tech-

niques for SLAM [20, 30]. These methods do not incorporate the

full correlation between the landmarks, so that the computational

constraints are less restrictive. However, their memory demand in-

creases at least linearly with the number of landmarks used.

Recently, Sala et al. [25] presented a graph-theoretic formulation

for the selection problem of visual features to perform navigation in

known environments. The optimal set of features is defined as the

minimal set with which navigation is possible. Zhang et al. [32] pro-

posed an entropy-based landmark selection method for SLAM. This

method specifies a measure of which visible landmark is best in terms

of entropy reduction. However, it only provides a vague guideline for

how many features should be selected at a given point in time. Fur-

thermore, Lerner et al. [17] presented another quality measure for

landmark selection in known environments which is based on the

comparison of pose uncertainties. Dissanayake et al. [6] suggested a

map management which ensures a uniform distribution of landmarks

over the traversed area. Apart from landmark selection, other active

methods were presented such as maximizing the SLAM estimate by

intelligent path planning [4].

3 BACKGROUND

3.1 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes filter to

estimate the state xt of a dynamic system [14]. This state is rep-

resented as a multivariate Gaussian distribution N(µ, Σ). The esti-

mate is updated using nonlinear controls and observations ut and zt.

The key idea of the UKF is to apply a deterministic sampling tech-

nique that is known as the unscented transform to select a small set of

so-called sigma points around the mean. Then, the sigma points are

transformed through the nonlinear state transition and measurement

probability functions, and the Gaussian distributions are recovered

from them thereafter. The UKF can better deal with non-linearities

and thus leads to more robust estimates compared to other techniques

such as the extended Kalman filter.

3.2 Vision-based Localization

In this work, we use the UKF to perform state estimation. In case

of localization, it estimates the 3D pose of the robot in a given 2D

map of the environment. Besides Monte Carlo localization, Kalman

filter-based localization is one of the standard techniques applied in

mobile robotics.

A control ut for the UKF is obtained from the robot’s motion. On

wheeled robots, an odometry motion model can be used, utilizing the

data from the robot’s wheel encoders [31]. Humanoid robots can use

the executed motion command as a rough guess, or estimate their

movement by integrating the leg joint angles while walking [11].

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

2



As observations zt, we extract speeded-up robust features

(SURF) [2] from the camera images. Extracted descriptors of these

features are then matched to landmarks in a map. This was con-

structed beforehand for each environment and contains the global

2D positions and SURF descriptors of the landmarks on the floor.

Whenever the robot matches a perceived feature to a landmark in

the map, it integrates the relative 2D position of the landmark as ob-

servation zt = (rt, ϕt) in the UKF in order to estimate its pose

xt = (xt, yt, θt).

3.3 Simultaneous Localization and Mapping

We also use the UKF for the setting when the environment is not

known to the robot and the positions of landmarks need to be esti-

mated as well. This problem is widely known as the landmark-based

simultaneous localization and mapping (SLAM) problem where one

seeks to simultaneously determine the map of the environment and

the pose of the robot. We apply the UKF as a probabilistic method to

estimate the joint probability distribution over the robot’s pose and

the landmark locations:

p(xt, l1, . . . , lM | u1, . . . ,ut, z1, . . . , zt) (1)

Here, xt is the pose of the robot at time t and the position of the

landmarks l1, . . . , lM given all previous motions u1, . . . ,ut and ob-

servations z1, . . . , zt. Various approaches to estimate this posterior

have been presented in the literature.

In this paper, we address the SLAM problem using the UKF by

representing the joint state (xt, l1, . . . , lM ) with 〈µ, Σ〉. This is a

standard approach which has been shown to operate successfully in

the past. The mean of the jth landmark location (µ2j+2, µ2j+3) is

denoted by
“

l
[j]
x , l

[j]
y

”

. Furthermore, we interpret the state transition

function as the robot’s motion model and assume that range and bear-

ing observations (r, ϕ) are given so that we can define a correspond-

ing observation model.

3.4 Reinforcement Learning

In reinforcement learning, an agent seeks to maximize its reward by

interacting with the environment [29]. Formally, this is defined as

a Markov decision process (MDP) using the state space S, the ac-

tions A, and the rewards R. By executing an action at ∈ A in state

st ∈ S, the agent experiences a state transition st → st+1 and ob-

tains a reward rt+1 ∈ R. The overall goal of the agent is to maximize

its return Rt given by

Rt =

T
X

i=t+1

ri , (2)

where T is the time when the final state is reached. One finite se-

quence of states s0, . . . , sT is called an episode.

The decision of which action to take in a certain state is governed

by the policy

π(s, a) = p(a|s) ∀s ∈ S , (3)

which denotes the probability of taking action a in state s. The

action-value function, also called Q-function, for a policy π is de-

fined as

Q
π(s, a) = Eπ{Rt|st = s, at = a} , (4)

which denotes the expected return of taking action a in state s and

following policy π afterward. The optimal policy maximizes the ex-

pected return, which corresponds to the maximum Q-value for each

state-action pair.

Figure 2. Illustration of the single-goal navigation task (a-c) and the
round-trip task (d).

4 LEARNING NAVIGATION POLICIES

In our work, we consider three typical navigation tasks and analyze

how to solve them in the reinforcement learning setting. In the first

task, the robot has to reach a target location as fast as possible while

staying localized using its camera and a given map. To achieve this,

the robot has to adapt its travel speed to obtain good feature observa-

tions on the one hand, while it has to drive as fast as possible to reach

its goal quickly on the other hand. Note that this single goal naviga-

tion task can be easily extended to a multi-waypoint path following

task. Such a path of waypoints may be given to the robot by a higher

level task planner or a path planner such as A∗.

The second and third task address the problem of navigating in an

environment without a known map towards a given (relative) loca-

tion and to perform round-trip navigation tasks, respectively. Here,

the challenge is to select a good subset of landmarks to solving the

SLAM problem while at the same time taking into account the com-

putational constraints of the system.

Because the belief about the robot’s state is represented by a prob-

ability distribution in the UKF, the system is ideally modeled by

a partially observable MDP (POMDP) [27], which requires an ex-

plicit modeling of the probability distribution of the state. This makes

POMDPs computationally hard to solve and intractable for most real-

world tasks. We use the so-called augmented MDP [24] as approxi-

mation of the POMDP. Hereby, the belief of the state is represented

by its most-likely estimate and the task is modeled as an MDP. The

uncertainty of the underlying belief distribution is taken into account

by including the corresponding entropy in the state representation.

4.1 Navigation Tasks

4.1.1 Navigation Task with a Given Map

Let us consider the following most basic navigation task (Fig. 2(a)).

The robot is located at a starting position A and is supposed to reach

a goal position B. In this first setting, the robot is supposed to have

a map of the environment, that means it knows where the individual

landmarks it can observe are located in the environment. However,

the robot’s motion is affected by drift and the overall motion influ-

ences the visual perception of the robot because the observed scene

is affected by motion blur. The faster the robot moves, the more its

visual perception is degraded. This has a direct impact on feature ex-

traction and matching and, thus, on the localization performance. By

moving slowly or stopping from time to time, the negative impact of

motion blur can be avoided, but the robot needs more time to finish

the navigation task.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

3



Rewards Since we require the robot to reach the goal as quickly

as possible, we encode this directly in the reward function. The im-

mediate reward at time t is given as

rt =

(

C if t = T

−∆t otherwise,
(5)

where C is some constant, T is the final time step, and ∆t is the time

interval between the update steps. The final state is reached when

the robot’s true pose is sufficiently close to the destination. This has

the effect that the robot is driven to reach the destination as fast as

possible in order to maximize its reward.

Note that we do not model an explicit punishment for delocal-

ization or running into a wall. We assume that the robot has some

sensors for obstacle avoidance on board, such as bumpers, infrared,

or sonar. When the robot is in danger of running into an obstacle, it is

immediately stopped by the obstacle avoidance. The time it takes to

stop, re-localize, and accelerate is the implicit punishment for getting

off the track, which is typically a few seconds.

Actions The set of available actions in this task is coupled to the

mobile robot at hand. On our wheeled robot, we have a basic naviga-

tion controller available which steers the robot to the next goal point

based on the current most-likely pose estimate xt = (xt, yt, θt) and

the desired target velocity vtarget. Depending on the angle φ to the

next goal point, the translational and rotational velocities v and ω

are set in the following way. When |ϕ| ≥ π
2

, v is set to zero and the

robot orients itself towards the goal. Otherwise, v is set to the desired

target velocity vtarget and ω is set depending on φ.

As parameter of the navigation controller which influences the

quality of the observed images, we learn the overall velocity limit

vtarget as combination of the translational and rotational velocity. That

means that the resulting actions for reinforcement learning can be

kept as simple as setting vtarget (in m/s) to the following values:

A = {0.1, 0.2, 0.3, 0.4, 1.0} . (6)

Regarding the humanoid robot, a discrete set of actions can be di-

rectly used to learn the controlling policy to reach the goal fast and re-

liably. This eliminates the need for a navigation controller that steers

the robot to the goal, because the full controller policy is learned.

Note that there is still a gait controller running on the humanoid,

which translates the walking commands into commands for the joint

angles. On our humanoid, we employ the following actions:

• Walk forward: The robot walks 10 cm in forward direc-

tion (2 steps).

• Turn left / turn right: The robot turns 23◦ on the spot in the given

direction (2 steps).

• Stand still: The robot interrupts its movement and waits for

0.7 seconds to acquire a good quality image for its localization.

This is the time required for the robot’s body to stabilize after it

has stopped.

We chose these actions since they proved to yield the most reliable

and predictable behavior.

4.1.2 Single-goal Navigation Task Without Known
Landmark Locations

In the second scenario, the landmark locations are not known to the

robot and it also has to reach a given location (specified in relative

coordinates to the start location). Thus, the robot has to solve a sim-

ilar task as before but without a map and thus has to estimate the

map online (Fig. 2(b-c)) . Here, the problem arises that estimating

the map as well leads to a significantly increased overhead in mem-

ory and computational load. Thus, the key task of the robot is to

select and integrate only landmarks that are useful for the navigation

task. We assume that N landmarks are distributed randomly over the

environment. When the robot perceives a new landmark, it has to de-

cide whether it should integrate this landmark in the UKF or not. The

UKF has a landmark capacity of M landmarks with M ≪ N .

Rewards The goal is to choose the landmarks in such a way that

the distance of the final position of the robot (xT , yT )⊤true and the

target position B is minimized. In this scenario, we ignore the impact

of the robot’s velocity on its perception and the potential problem of

missing landmark detections due to motion blur for now. Hence, we

define the reward as

rt =

(

−
˛

˛B − (xT , yT )⊤true

˛

˛ if t = T

0 else,
(7)

which is the negative Euclidean distance of the robot’s true position

to the goal B if the training episode reaches the terminal state sT ;

intermediate rewards are set to zero. In this task, the terminal state is

reached when the robot’s estimated position is at the goal B.

Actions In this task, we utilize the existing navigation controller

described above with a constant velocity. Thus, the robot only needs

to decides whether to integrate a new landmark or not, which is a

binary decision:

A = {areject, aaccept} (8)

4.1.3 Round-trip Task Without Known Landmark Locations

In the round-trip task, the robot is supposed to reach several subgoals

(see Fig. 2 (d)). It starts at A and is supposed to drive to B, back to A

and then drive to B and A again. A new subgoal is selected as soon

as the position estimate of the robot (xt, yt)
T is close to the current

subgoal – independent of the robot’s true position (xt, yt)
T
true. In this

task, the error in the pose estimate should be minimized over the

whole trajectory. For convenience, we specify the return directly as

the negative average error over the remaining trajectory

Rt = −
1

|T − t|

T
X

t′=t

˛

˛

˛

˛

„

xt′

yt′

«

true

−

„

xt′

yt′

«

˛

˛

˛

˛

, (9)

whereas t specifies the current time and T is the time when the robot

reaches its final destination. The actions are identical to the single-

goal SLAM task. To simplify things for the second task, landmark

selection is only allowed while the robot moves from A to B the first

time. The round-trip task is more complex than the previous one.

However, it is worth considering since it focuses on the loop-closing

problem of SLAM where a robot re-visits previously seen areas in

order to correct incremental pose errors. Therefore, this task has a

higher practical relevance than the single-goal task.

4.2 State Space S

The complete state of the robot consists of the global pose estimate

xt, the current velocity, and a characterization of the environment

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

4



including landmarks and waypoints to reach. However, this com-

plete state representation is impractical to consider for reinforcement

learning. Learning in this complete description would take too long

and generalization would be hard to achieve.

Thus, we define a set of features based on the complete state which

characterizes the state sufficiently detailed and as general as needed

for learning a specific navigation task. Based on the current, most-

likely pose estimate xt = (xt, yt, θt)
⊤ and the environment, we de-

fine the following features:

• The Euclidean distance to the next goal point (gx, gy)⊤

d =
p

(gx − xt)2 + (gy − yt)2. (10)

• The angle relative to the next goal point

φ = atan2(gy − yt, gx − xt) − θt. (11)

In combination with d, this completely characterizes the rela-

tive position of the next goal point which has to be reached. In

multiple-waypoint scenarios, the next waypoint is regarded as goal

point.

• The uncertainty of the localization, represented in terms of the

differential entropy of the pose:

h =
1

2
ln

`

(2πe)3
˛

˛det
`

Σ3×3´
˛

˛

´

. (12)

This measures how well the robot is localized: A higher entropy

corresponds to a higher pose uncertainty.

In addition, the following features are relevant in the context of

landmark integration in SLAM:

• The angle ϕl to the potential new landmark l[new].

• The number of landmarks already integrated in the UKF

m = |{j ∈ M : Σ2j+2 < ∞∧ Σ2j+3 < ∞}| , (13)

where Σ2j+2 and Σ2j+3 are the variances of the jth landmark in

the x and y direction.

• The distance of the potential new landmark to the closest landmark

already integrated

dl = min
j ∈ L with

Σ2j+2 < ∞ ∧ Σ2j+3 < ∞

˛

˛

˛

˛

˛

 

l
[j]
x

l
[j]
y

!

−

 

l
[new]
x

l
[new]
y

!

˛

˛

˛

˛

˛

.

(14)

For the localization task with motion blur (see Sec. 4.1.1), we

found the features d, φ, and h to be most relevant and sufficient for

completing the task. Other combinations of them, also including the

current velocity and the landmark density in the state representation,

did not lead to a significant improvement of the robot’s performance.

In the single-goal and round trip SLAM tasks, we use a combina-

tion of all of the above features, and additionally evaluate the effec-

tiveness of including the entropy in the state space.

Since the state space of the features is usually continuous, we need

to estimate the Q-function with some function approximator. Ei-

ther k-nearest neighbor (k-NN) regression [26] or radial basis func-

tion (RBF) networks [7] yielded good results in our experiments. In

contrast to a strictly discrete representation as feature table, these

methods suffer less from the effects of discretization.

Figure 3. Pioneer 2-DX8 robot in the experimental indoor
environment (left) and an observed floor patch with SURF as visual

landmarks (right).

Figure 4. The Nao humanoid robot [1] in the experimental indoor
environment (left) and an observed floor patch with SURF as visual

landmarks (right).

5 EXPERIMENTS

5.1 Navigation Policy for a Known Map

We evaluated our approach for known environments on a wheeled Pi-

oneer robot (Fig. 3) as well as on our Nao humanoid robot (Fig. 4).

The wheeled robot was equipped with a top-mounted camera observ-

ing the floor in front of it. Additionally, it carries a laser range finder

for obstacle avoidance and to provide a ground truth pose estimate

for evaluation.

The humanoid robot is equipped with two small cameras of web-

cam quality. One of them points to the ground in front of the robot,

which we use for localization. In addition, Nao has two ultrasound

sensors which can be used for obstacle avoidance. Since the hu-

manoid has no knowledge about its true pose, we use a special marker

to allow the robot to identify when it has reached the goal location.

This artificial landmark can be reliably detected even while the robot

is walking.

5.1.1 Learning the Navigation Policy in Simulation

The policy was learned in simulations. This allowed us to evaluate

different parameter settings for the learning algorithms and to run

a large number of learning and testing episodes without putting too

much strain on the real robots. Each simulated robot and its environ-

ment are modeled as close to reality as possible. This includes the

motion noise of the robots with a systematic drift to the left or right.

We use a map of artificial landmarks whose positions are randomly

distributed. To avoid an adaption of a robot’s behavior to a specific

environment, landmark positions and the direction of the systematic

motion error were randomized in each new learning and evaluation

episode.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

5



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p

v [m/s]

Experimental results
Fitted sigmoid function

Figure 5. Experimentally determined observation model p(z|v) for a given
velocity v of a wheeled robot in our indoor environment. The measured data

(blue crosses) are approximated by a sigmoid function (red line).

dest.

start

1m

Figure 6. Evolution of the trajectory followed by the humanoid throughout
the 1500 learning episodes (each 10th episode is drawn). At the beginning,

random exploratory actions are chosen and the robot does not reach the goal
within a maximum of 700 seconds (light gray trajectories). Towards the end,

the robot navigates successfully and efficiently towards the
destination (black trajectories). Note that there is a high noise in the

executed motion commands.

In order to obtain a policy which takes motion blur into account,

we modeled motion blur in the simulation environment as an effect

on the probability of an observation z given the current velocity v,

i.e., we determined the probability that a feature which is in the

robot’s field of view is detected given v. This dependency p(z|v)
was experimentally estimated using real data and is approximated by

a sigmoid function (Fig. 5). On the humanoid, the amount of motion

blur depends on the executed motion command and the current phase

of the walking cycle. As we are not able to accurately synchronize

the image acquisition with the walking cycle, we use the average ob-

servation probability for each walking motion instead.

Note that we model motion blur as effect on the observation prob-

ability only in the simulation environment, it is not part of the learn-

ing state space or the robot’s state estimate. Instead, the robot learns

about this effect while interacting with the environment.

Figure 6 shows the evolution of the humanoid’s behavior through-

out the learning process. As can be seen, in the beginning the robot

chose random exploratory actions. It did not reach the goal so that

the episodes were aborted after a maximum of 700 seconds (the re-

sulting trajectories are colored light gray). After a certain number of

learning trials, however, the robot successfully navigated towards the

destination (dark gray / black trajectories). The trajectories were get-

ting more and more efficient towards the end of the learning process.

Note that the robot had a systematic error in the executed motion

command in each of the episodes.

dest.start

1m
true pose
localization

Figure 7. A typical example of the executed trajectory of a learned policy.
The corresponding state space is displayed in Fig. 8.

0

1

2

0 1 2 3 4 5 6 7 8
v
el
. 
[m

/s
]

time [s]

action vtarget v
-8

-6

-4

-2

d
if
f.
 e
n
tr
o
p
y

0

2

4

6

8

d
 [
m
]

Figure 8. A typical example of the learned policy for a wheeled robot with
the dimensions distance and entropy of the state space. The corresponding
trajectory is displayed in Fig. 7. The robot maximizes its velocity until its

uncertainty gets too high, indicated by a high value of the differential
entropy. To re-localize, it then slows down. As soon as the uncertainty
decreases as an effect of localization, it accelerates again. As the robot

approaches the goal location, it slows down more frequently.

5.1.2 Evaluation of the Learned Policy

A typical trajectory and the corresponding state space over time of

the learned policy for a wheeled robot are displayed in Fig. 7 and 8.

The robot optimizes its time to reach the destination by driving at

maximum speed as long as it is confidently localized. When there

is risk of getting lost, indicated by a high entropy, it slows down

in order to observe landmarks. Note that for different values of the

distance d, different levels of the entropy are learned to be important.

As the robot gets closer to the goal, it frequently slows down so that

the target is reliably reached. Overall, the robot stays close to the

direct connection between start and destination.

Comparison to Constant Velocity A standard approach for a

wheeled robot is to set a constant target velocity vtarget. Figure 9(a)

displays an evaluation of following a constant velocity from vtarget =
0.2 m/s to 1 m/s, compared to our learned policy. Up to 0.4 m/s, an in-

creased velocity directly improves the time to destination. For higher

velocities, the robot is no longer able to perform observations, regu-

larly gets lost on its path, and has to stop in order to avoid collisions

and to re-localize. Despite this, there is still a small improvement in

the average time to destination. This means the robot accepts the risk

of nearly colliding and getting lost in favor of a faster speed.

But even when choosing the best policy of constant velocity, our

learned approach is significantly better. While the average time to

destination at 1 m/s is 13.56 s ± 0.61 s (95% confidence interval),

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

6



 0

 5

 10

 15

 20

 25

 30

 35

 40

learned
policy

 0.2  0.4  0.6  0.8  1

ti
m

e 
to

 d
es

ti
n
at

io
n
 [

s]

vtarget [m/s]

constant velocity
learned policy

(a) Constant velocity in the simulated sce-
nario (100 runs).

(b) Dual-mode control policies at various thresh-
olds for the entropy in the simulated sce-
nario (100 runs).

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.1 0.2 0.3 0.4 0.5 0.6 0.8 learned
policy

ti
m

e 
to

 d
es

ti
n

at
io

n
 [

s]

vtarget [m/s]

constant velocity
learned policy

(c) Constant velocity in the real indoor sce-
nario (10 runs).

Figure 9. Comparison of constant velocity policies and the dual-mode controller to our learned policy in known environments. Each policy is displayed with
mean and 95% confidence interval. The learned policy is significantly better than each other policy.

the robot is able to finish the task with our learned policy in 10.04 s±
0.18 s, which corresponds to a reduction of 26%.

Comparison to Dual-Mode Controllers A more advanced ap-

proach is to employ a dual-mode controller as introduced by Cas-

sandra et al. [5]. Similar to our learned policy, the entropy is used

to decide on which action to take. When the entropy is above a

threshold hthres, an action to reduce the uncertainty is selected, oth-

erwise a greedy action is chosen. These actions are vtarget = 0.1 and

vtarget = 1.0 in our scenario, respectively. Figure 9(b) displays the

resulting times for various values of hthres compared to the learned

policy on the wheeled robot.

Using the dual-mode controller, we achieve best results for

hthres = −2, resulting in a time to reach the destination of 12.39 s ±
0.31 s. The learned policy still yields a significant reduction of 17%.

Additionally, we evaluate the performance of a policy learned us-

ing our approach for the humanoid robot in comparison to a dual-

mode control policy. This dual-mode policy controls the robot to

walk forward while the estimated orientation towards the goal is

smaller than some threshold ϕ̂. Whenever the estimated angular dis-

tance to the goal is larger than ϕ̂, the robot stops its forward motion

and turns towards to goal. We chose the threshold of ϕ̂ = 35◦ since

smaller values lead to an oscillating behavior of the robot near the

destination, whereas larger values lead to frequent collisions with

the walls bounding the corridor. Whenever the uncertainty about its

pose exceeds a threshold, the robot stops in order to obtain a good

quality image. This threshold was empirically determined to mini-

mize the time to reach the destination while still achieving a success

rate of 100%. Thus, we optimized the parameters of this dual-mode

controller so as to perform best in our test environment.

It took the humanoid robot 117.18 s± 8.41 s to reach the destina-

tion with the hand-optimized controller, and only 106.66 s± 10.05 s

using our learned policy. A t-test with 95% confidence reveals that

the learned policy performs significantly better.

5.1.3 Verification on Real Robotic Systems

We now transfer the results from simulations into the real world by

applying the policy learned in simulation on real robots.

Wheeled Robot We first employ the Pioneer robot (Fig. 3) in an

indoor environment. Each policy is evaluated in 10 test runs, each

true pose
localization

start dest.

1m

true pose
localization

start dest.

1m ����������	��


true pose
localization

start dest.

1m ����������	��


Figure 10. Comparison of real robot trajectories at constant velocity
(top: 0.2 m/s, middle: 0.8 m/s) and variable velocity, i.e., following the

learned policy (bottom).

consisting of navigating from the start location to the destination.

The resulting navigation times are shown in Fig. 9(c).

Similar to the results from simulations, the learned policy out-

performs any policy of constant velocity by more than 25% and is

significantly better. When looking at the trajectories generated by

the policies qualitatively, the results are also similar to the simulated

ones (Fig. 10). At a slow constant velocity, the robot stays close to

the optimal path of the straight-line connection between start and

destination. When driving faster at 0.8 m/s, the robot is not able to

observe landmarks and quickly gets lost with the result of a near-

collision with the wall. Note that there is a systematic drift to the

right in the robot’s motion. Contrary to that, the robot does not need

to be stopped by the obstacle avoidance while following the learned

policy. When it in danger of getting lost, it immediately slows down

to re-localize. As a result, the robot reaches its destination reliably

and quickly.

Humanoid Robot Finally, we performed experiments with our

real humanoid (Fig. 4) navigating in our hallway environment. We

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

7



����� ���
�	��
���
��

Figure 11. Estimated trajectory of the humanoid while executing the
learned navigation policy in our hallway. The robot walks forward with an

error resulting from a drift to the left. Whenever it seems appropriate
according to its belief, the robot executes a turning action to re-align with the

goal. The robot stops as soon as it recognizes the goal landmark.

-5

0

5

0 20 40 60 80 100
time [sec]

walk
turn right

turn left
stand

0 20 40 60 80 100
time [sec]

entropy

est. distance to target [m]
est.  angular distance to target [rad]

Figure 12. The state features over time during typical runs with a
hand-optimized controller (left) and the learned navigation policy (right) in

simulation. The hand-optimized controller stops the robot in regular
intervals to decrease the uncertainty, whereas the learned policy adapts the

observation frequency according to the current state.

conducted test runs both with the hand-optimized controller and with

the policy learned in simulation. The robot needs 93.16 s ± 10.14 s

using the hand-optimized controller compared to 86.53 s ± 8.60 s

using the learned policy, so the learned policy outperforms the hand-

optimized controller by 7.1%. Again, a t-test with 95% confidence

shows that the learned policy performs significantly better.

Figure 11 depicts a typical trajectory of the Nao robot while ex-

ecuting the learned navigation strategy (the drawn poses were esti-

mated by the localization system). As can be seen, the robot rotates

from time to time to compensate for its motion drift and to re-align

with the goal. This learned policy is not adapted to the specific drift

direction.

Note that in these experiments, we used slow walking patterns as

the Nao’s stability was highly reduced when walking faster in the

current implementation. Accordingly, the acquired images are only

moderately blurred. The robot can still match an average of 3.25

features per frame while moving, and actions to reduce the uncer-

tainty are rarely executed. Thus, the efficiency gain of the learned

controller compared to the hand-optimized controller results mainly

from choosing the navigation actions more foresightedly, which

leads to shorter paths.

In future implementations, we will optimize the humanoid’s gait,

so faster walking patterns will be used. While this will enable the

humanoid to potentially reach its goal faster, it also increases the

amount of motion blur, thus seriously reducing the average number

of successfully matched features while moving. To evaluate the im-

pact of motion blur, we learned policies for a different set of esti-

mated observation probabilities in the simulator, i.e., we decreased

the probability of a successful feature match by 80% during walking

and turning.

Again, we compared the learned policy to a hand-optimized dual-

mode controller that stops the humanoid whenever the entropy ex-

ceeds a fixed threshold. For each of the different observation prob-

abilities, we selected the hand-optimized controller leading to the

smallest average time to destination while still achieving a success

rate of 100 %. The results show that the learned policy is signifi-

cantly faster (9% gain) than the hand-optimized policy.

Figure 12 shows the state space of two typical runs with the hand-

optimized controller (left image) and the learned policy (right im-

age). The hand-optimized controller stops the robot in regular inter-

vals to obtain good observations. In contrast to that, the learned pol-

icy accepts higher uncertainties as long as the distance to the desti-

nation is high, whereas it increases the robot’s stand frequency when

approaching the destination.

5.2 Landmark Selection Policy for Navigation in
Unknown Environments

We evaluate the performance of our learned landmark selection

policies in the single-goal and round trip SLAM scenarios on our

wheeled Pioneer platform (Fig. 3), first in simulations and then on

the real robot.

� � � � � �� �� ��

	
�����������
	
���������

���
�
� ���������
� �
�
���
�� ������
� �
�

��������

�

 

�


��
�!
��

��
�


��

�

�

Figure 13. Average performance of the learned policies and heuristics
w.r.t. 1,000 test episodes in the single-goal SLAM task. For the learned
policies, the mean over ten training runs as well as the corresponding

95%-confidence interval is shown.

5.2.1 Single-goal Task in Simulation

For the single-goal task in simulation, we choose an environment

where N landmarks are randomly distributed in a 30 m by 60 m area.

The distance between the start position A and the goal B is set to 44

m. We train our policy for 1,000 episodes. In each episode, landmarks

are randomly re-distributed. We compare the trained policies with

two heuristics. The first one is the M -first heuristic which simply

integrates the M first landmarks that are observed. An apparently

better policy is the equidistant heuristic. With this heuristic, the robot

only integrates a new landmark after it has driven a certain distance

so that the landmarks are approximately uniformly distributed over

the whole trajectory (similar to [6]).

At first, we consider an UKF with a landmark capacity of M =
10 and an environment with N = 50 landmarks. For each learning

approach, ten training runs are performed. Each trained policy and

heuristic is evaluated in 1,000 different environments (see Fig. 13).

The one-sample t-test at 95% confidence shows that all three learning

approaches are significantly better than the equidistant heuristic.

A notable fact is that in this setting, we were not able to show that

there is any benefit from including the feature of the entropy h of

the robot’s pose in the state space. Even at 75% confidence, the t-

test did not reveal a difference between the learning approach using

the entropy compared to the setting where it is ignored. One reason

why the current entropy of the robot’s pose is not a good indicator of

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

8



whether to integrate a landmark or not in the SLAM task is that land-

marks are integrated with an uncertainty over the robot’s pose. That

means that the robot is not able to reduce its uncertainty immediately

after integrating a landmark. The relative position of the landmark,

for example, is a better indicator on how the robot will perform in

reaching the goal.

In order to evaluate how good the trained policies generalize, we

trained and tested a policy in environments with N = 50 as well

as N = 100 landmarks. In addition, we use UKFs with a capacity

M of five, ten, and 15 landmarks. Fig. 14 (a) illustrates the high

degree of generalization of our learning approach. For instance, if

we perform a training in a setting with N = 50 and M = 5, we

see that the trained policy leads to significantly better results than

the equidistant heuristic in all six test scenarios. This indicates that

our approach generalized over different landmark densities which is

similar to environments of different scale and sensor range.

5.2.2 Single-goal Task Performed in a Real World
Experiment

Furthermore, we evaluated our landmark selection learning approach

in the real experimental environment. Similarly to Sec. 5.1, we use

a pioneer robot equipped with a camera and laser range finder in a

hallway environment. Learning the policy in this real-world environ-

ment would be impractical because this would not only require us

to perform hundreds of training episodes but also to install different

landmark distributions for each training episode. Thus, we trained

the policy in simulation and tested it in the real-world setting. We

also compared the trained policy to the equidistant heuristic. Both

the trained policy as well as the equidistant heuristic were tested ten

times. The trained policy results in an error of 0.50±0.08 m whereas

the equidistant heuristic leads to an error of 0.66 ± 0.07 m. Hence,

the trained policy is significantly better than the equidistant heuristic

(w.r.t. a t-test at 95% confidence).

5.2.3 Round-trip Task

The performance of our learning procedure for the round-trip task is

evaluated in a simulated environment with a wheeled robot, similar

to the single-goal task. The error evaluation, however, differs since

the average localization error over the whole trajectory was consid-

ered here to provide a better performance when approaching also the

intermediate goal. Again, we compare our learning with the equidis-

tant heuristic. Fig. 14 (b) shows that the learned policy is significantly

better than the heuristic. Furthermore, it is shown that we were able

to generalize over the UKF capacity M as well as the number of

landmarks N .

6 CONCLUSION

In this paper, we presented a novel approach to learning efficient nav-

igation policies for mobile robots that are constrained in their sensing

capabilities as well as in their computational resources. We consid-

ered navigations tasks in known as well as unknown environments.

By considering these navigation problems as reinforcement learning

tasks, the robot can learn policies for choosing appropriate actions.

In case of navigating in known environments, the robot is able to

select the optimal velocity so that it reaches its target location as fast

as possible and with minimum error.

For navigation in unknown environments, the map has to be esti-

mated as well to navigate efficiently. This task, however, requires sig-

nificant computational resources. We presented an approach to learn

p
o
li

ci
es

 t
es

te
d
 i

n
 s

ce
n
ar

io

 9

 12

 15

5
/1

0
0

learned policy
equidistant heuristic

 9

 12

 15

5
/5

0

 6

 9

1
0
/1

0
0

 6

 9

1
0
/5

0

 3

 6

1
5
/1

0
0

 3

 6

5/100 5/50 10/100 10/50 15/100 15/50
1
5
/5

0
policies trained in scenario

(a) Single-goal task

p
o
li

ci
es

 t
es

te
d
 i

n
 s

ce
n
ar

io

 3

 4

 5

5
/1

0
0

learned policy

 3

 4

 5

5
/5

0

equidistant heuristic

 1

 2

1
0
/1

0
0

 1

 2

1
0
/5

0

 1

 2

1
5
/1

0
0

 1

 2

5/100 5/50 10/100 10/50 15/100 15/50

1
5
/5

0

policies trained in scenario

(b) Round-trip task

Figure 14. High degree of generalization in the single-goal task (a) and the
round trip task (b) in unknown environments. The mean error over ten
training runs and the corresponding standard derivation is shown. All

policies below the dashed horizontal line are significantly better than the
equidistant heuristic (α = 0.05).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

9



an efficient landmark selection policy. The ability of a mobile robot

to decide which landmark to incorporate into its belief given the nav-

igation task at hand allows for navigation under computational con-

straints. The presented method is able to determine which landmark

is valuable for the robot to efficiently solve its current navigation

task.

In a series of real-world and simulated experiments with wheeled

robots and a humanoid, we demonstrated that our learned naviga-

tion policies significantly outperform strategies using advanced and

manually optimized heuristics.

ACKNOWLEDGEMENTS

This work has been supported by the German Research Foundation

(DFG) under contract number SFB/TR-8 and within the Research

Training Group 1103.

REFERENCES

[1] Aldebaran Robotics. The Nao humanoid robot. http://www.aldebaran-
robotics.com/en/. Retrieved June 2010.

[2] H. Bay, T. Tuytelaars, and L. V. Gool, ‘SURF: Speeded-up robust fea-
tures’, Proc. of the ninth European Conf. on Computer Vision, (2006).

[3] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke, ‘Metric lo-
calization with scale-invariant visual features using a single perspective
camera’, in European Robotics Symposium 2006, ed., H. Christiensen,
volume 22 of STAR Springer tracts in advanced robotics, (2006).

[4] M. Bryson and S. Sukkarieh, ‘Active airborne localisation and explo-
ration in unknown environments using inertial SLAM’, in Proc. of the

IEEE Aerospace Conference, (2006).
[5] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, ‘Acting under un-

certainty: Discrete bayesian models for mobile-robot navigation’, in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), (1996).
[6] G. Dissanayake, H. Durrant-Whyte, and T. Bailey, ‘A computation-

ally efficient solution to the simultaneous localisation and map build-
ing (SLAM) problem’, in Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA’00), pp. 1009–1014, (2000).
[7] K. Doya, ‘Reinforcement learning in continuous time and space’, Neu-

ral Computation, 12(1), 219–245, (2000).
[8] R. He, S. Prentice, and N. Roy, ‘Planning in information space for a

quadrotor helicopter in a GPS-denied environments’, in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), (2008).
[9] A. Hornung, M. Bennewitz, and H. Strasdat, ‘Efficient vision-based

navigation – Learning about the influence of motion blur’, Journal of

Autonomous Robots, 29, 137–149, (August 2010).
[10] A. Hornung, H. Strasdat, M. Bennewitz, and W. Burgard, ‘Learning

efficient policies for vision-based navigation’, in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), (2009).
[11] A. Hornung, K. M. Wurm, and M. Bennewitz, ‘Humanoid robot lo-

calization in complex indoor environments’, in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), (2010). Accepted
for publication.

[12] V. A. Huynh and N. Roy, ‘icLQG: Combining local and global opti-
mization for control in information space’, in Proc. of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), (2009).
[13] J. Ido, Y. Shimizu, Y. Matsumoto, and T. Ogasawara, ‘Indoor Naviga-

tion for a Humanoid Robot Using a View Sequence’, The International

Journal of Robotics Research, 28(2), 315–325, (2009).
[14] S. J. Julier and J. K. Uhlmann, ‘A new extension of the Kalman filter to

nonlinear systems’, in International Symposium on Aerospace/Defense

Sensing, Simulation and Controls, pp. 182–193, (1997).
[15] T. Kollar and N. Roy, ‘Using reinforcement learning to improve ex-

ploration trajectories for error minimization’, in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), (2006).
[16] C. Kwok and D. Fox, ‘Reinforcement learning for sensing strategies’,

in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), (2004).
[17] R. Lerner, E. Rivlin, and I. Shimshoni, ‘Landmark selection for task-

oriented navigation’, IEEE Transaction on Robotics, 23(3), (2007).

[18] J. Michels, A. Saxena, and A. Y. Ng, ‘High speed obstacle avoidance
using monocular vision and reinforcement learning’, in ICML ’05: Pro-

ceedings of the 22nd international conference on Machine learning, pp.
593–600, New York, NY, USA, (2005). ACM.

[19] J. Miura, Y. Negishi, and Y. Shirai, ‘Adaptive robot speed control by
considering map and motion uncertainty’, Journal of Robotics & Au-

tonomous Systems, 54(2), 110–117, (2006).
[20] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, ‘FastSLAM:

A factored solution to the simulaneous localization and mapping prob-
lem’, in Proc. of the National Conf. on Artificial Intelligence (AAAI’02),
pp. 593 – 598, (2002).

[21] S. Oßwald, A. Hornung, and M. Bennewitz, ‘Learning reliable and ef-
ficient navigation with a humanoid’, in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), (2010).
[22] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello, ‘A

visual odometry framework robust to motion blur’, in Proc. of the IEEE

International Conference on Robotics & Automation (ICRA), (2009).
[23] N. Roy, W. Burgard, D. Fox, and S. Thrun, ‘Coastal navigation–mobile

robot navigation with uncertainty in dynamic environments’, in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), (1999).
[24] N. Roy and S. Thrun, ‘Coastal navigation with mobile robots’, in Ad-

vances in Neural Processing Systems 12 (NIPS), volume 12, (1999).
[25] P. Sala, R. Sim, A. Shokoufandeh, and S. Dickinson, ‘Landmark selec-

tion for vision-based navigation’, IEEE Transaction on Robotics, 22(2),
(2006).

[26] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor Methods

in Learning and Vision: Theory and Practice, MIT Press, Cambridge,
MA, USA, 2006.

[27] E. J. Sondik, The optimal control of partially observable Markov deci-

sion processes, Ph.D. dissertation, Stanford University, Stanford, USA,
1971.

[28] H. Strasdat, C. Stachniss, and W. Burgard, ‘Which landmark is useful?
Learning selection policies for navigation in unknown environments’,
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
(2009).

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Adaptive Computation and Machine Learning, The MIT Press, March
1998.

[30] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, ‘Simultaneous localization and mapping with sparse extended
information filters’, Int. Journal of Robotics Research, 23, (2004).

[31] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT
Press, September 2005.

[32] S. Zhang, L. Xie, and M. Adams, ‘Entropy based feature selection
scheme for real time simultaneous localization and map building’, in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS’05), (2005).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

10



Locomotion gait optimization for a quadruped robot
Miguel Oliveira 1, Cristina Santos 2, Manuel Ferreira3, Lino Costa 4 and Ana Rocha 5

Abstract. This article describes the development of a gait optimiza-
tion system that allows a fast but stable robot quadruped crawl gait.

We focus in the development of a quadruped robot walking gait
locomotion that combine bio-inspired Central Patterns Generators
(CPGs) and Genetic Algorithms (GA). The CPGs are modelled as
autonomous differential equations, that generate the necessary limb
movement to perform the walking gait, and the Genetic Algorithm
perform the search of the CPGs parameters.

This approach allows to explicitly specify parameters such as am-
plitude, offset and frequency of movement and to smoothly modulate
the generated trajectories according to changes in these parameters.
It is therefore easy to combine the CPG with an optimization method.
A genetic algorithm determines the best set of parameters that gener-
ates the limbs movements. We intend to obtain a walking gait loco-
motion that minimizes the vibration and maximizes the wide stability
margin and the forward velocity.

The experimental results, performed on a simulated Aibo robot,
demonstrated that our approach allows low vibration with a high ve-
locity and wide stability margin for a quadruped walking gait loco-
motion.

1 Introduction

Robot locomotion is a challenging task that involves the control of
a great number of degrees of freedom (DOF’s). Several previous
works, [11, 22, 15], proposed biologic approaches to modulate the
gait locomotion of quadruped robots, combining biometric sensory
information with motion oscillators such as CPGs.

The problem of finding the best possible locomotion is a prob-
lem currently addressed in the literature [2, 6, 14]. Usually optimiza-
tion systems are applied to improve the performance of the Aibo
quadruped robot locomotion. The competition in Robocup is one of
the motivation engines, for these works. In the following, we briefly
describe some relevant works in this domain.

In [2] it is presented a Genetic Algorithm robust to the noise in the
parameters evolution and that also avoids premature local optima.
The evaluation is made on a robot soccer field, and the robot com-
municates by wireless with an external computer where the learning
algorithm is executed. The goal of the fitness is to maximize the robot
velocity. As a result of this learning algorithm the robot moves with

1 Industrial Electronics Department, School of Engineering,University of
Minho, Portugal, email: mcampos@dei.uminho.pt

2 Industrial Electronics Department, School of Engineering,University of
Minho, Portugal, email: cristina@dei.uminho.pt

3 Industrial Electronics Department, School of Engineering,University of
Minho, Portugal, email: mjf@dei.uminho.pt

4 Production Systems Department, School of Engineering, University of
Minho, Portugal, email: lac@dps.uminho.pt

5 Production Systems Department, School of Engineering, University of
Minho, Portugal, email: arocha@dps.uminho.pt

a velocity of 0.290 (m/s).
A comparison between several learning locomotion algorithms,

including Genetic Algorithm and Policy Gradient Algorithm, is pre-
sented in [14]. This is also an online learning performance that uses
three Aibo robots for decreasing the time spending on each test. The
optimization goal is to determine the best 12 parameters of an ellipti-
cal locus scheme of locomotion, such that the robot takes less time to
walk a certain distance. Each learning has a previous hand-tuned set
of parameters and the best results were achieved the by the hill climb-
ing and Policy Gradient Algorithm. The average speed achieved by
the Policy Gradient Algorithm was 0.291 (m/s).

In [6] it is presented an evolutionary algorithm based on a genetic
algorithm. The genetic operators are chosen by an adaptation mech-
anism. The locomotion is implemented in real time and it is evalu-
ated by analyzing the forward-backward motion, the side-walk, the
rotation motion and the vibration. For measuring the vibration they
use accelerometers of the robot. For each sensor and during a test
the standard deviation (std) of accelerometer measurements is calcu-
lated. The evaluation tests are performed in a robot soccer field, and
the evaluation calculus is made in an external computer using an ex-
ternal camera for motoring the translation and rotational movements.

In [10] it is presented an evolutionary algorithm (EA) to optimize
a vector of parameters for locomotion of an ERS110 robot. The EA
uses a steady-state algorithm that applies the mutation and/or the re-
combination of operators to create new individuals from sets of par-
ents. To avoid local minima an individual can be a parent during a
predefined number of times. The solution obtained by the EA moves
the robot with a velocity of 0.167 m/s.

In [13] it is presented an optimization system for the locomotion of
Aibo 210 based on the Powell’s method. It optimizes 12 parameters
of a locus locomotion scheme. Optimization is made online. In each
iteration the robot moves between two landmarks, and the goal is to
maximize the forward velocity. They achieved an average speed of
0.2269 (m/s) for the rectangular locus and an average speed of 0.25
(m/s) for the trapezoid locus.

In this work, we propose an approach to optimize a walk gait lo-
comotion, using Central Pattern Generators (CPGs) and a genetic al-
gorithm.

CPGs are neural networks located in the spine of vertebrates, that
generate coordinated rhythmic movements, namely locomotion [8].
In this work, a locomotion controller, based on CPGs, generates
trajectories for hip robot joints [15]. These CPGs are modelled as
coupled oscillators and solved using numeric integration. They have
been previously applied in drumming [4] and postural control [1].

The proposed CPG is based on Hopf oscillators, and allows to
explicitly and smoothly modulate the generated trajectories accord-
ing to changes in the CPG parameters such as amplitude, offset and
frequency. In order to achieve the desired walk gait movement, it is
necessary to appropriately tune these parameters. In this work, these

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

11



parameters are optimized using a Genetic Algorithm. Optimization
is done online in a simulated ers-7 AIBO robot using Webots [17].

This optimization is a non-linear problem where continuity and
convexity conditions are not guaranteed. Thus, searching for a global
optimum is a difficult task that requires approaches based on stochas-
tic algorithms like evolutionary algorithms, in particular, genetic al-
gorithms. These are search algorithms that mimic the process of nat-
ural selection [5]. Thus, unlike conventional algorithms, in general,
only the information regarding the objective to optimize is required.
Moreover, they are based on a population that evolves over time, pos-
sibly in the direction of the optimum.

This article is structured as follows. In Section 2, we explain how
we generate locomotion . Section 3 presents the optimization sys-
tem and it is discussed the objective function. Simulated results are
described in Section 4. The paper ends with a discussion and conclu-
sions in Section 5.

2 LOCOMOTION GENERATION
In this section we describe the system used to generate locomotion.
Firstly, a brief description of gaits focusing in the generated gait is
done. Next, a description of the modelled CPGs is done, including
the network of Hopf oscillators.

2.1 Gait Description
During locomotion, quadruped walking animals have to usually
move their legs in a manner that provides the suitable forward force
at a minimal energy expenditure while maintaining their equilibrium.
This coordinated cyclic manner of lifting and placing the legs on the
ground, called a gait, is important for equilibrium stability and the
step cycle sequence is typical for vertebrates: left forelimb (LF), right
hindlimb (RH), right forelimb (RF), and left hindlimb (LH).

Quadrupedal gaits are classified according to the duration of their
stance phases [16], i.e. their duty factor values, and their relative
phases. In general, the duty factor β reduces as the speed increases.

In this work we will address a crawl gait. This is a symmetric gait,
meaning that the two legs of the same girdle are 0.5 out of phase.
This gait is singular (two or more legs are simultaneously lifted or
placed during a stride) and regular (all the legs have the same duty
factor).

In general, the number of step cycles per second increases as the
speed of locomotion increases [7]. This corresponds to a reduction in
the step cycle duration almost exclusively due to a shortening of the
stance phase (limb in contact with the ground), whereas the swing
phase (no ground contact) is kept nearly constant.

Herein, we assume that at all walking speeds the onset of swing in
a foreleg occurs just after the onset of stance in the ipsilateral hind
leg [7]. In order to achieve this, we use the wave gait rule: the gait
phase (ϕLH ) follows the value of the duty factor (β ). The use of this
rule improves the stability of the locomotion [9, 16, 12]. Stability
is measured by calculating the stability margin [9] which decreases
approximately linearly with the velocity increase (see results).

2.2 Rhythmic Movement Generation
The rhythmic movements of each hip joint of a limb, i, are generated
by a Hopf oscillator, given by

ẋi = α
(

µ− r2
i

)
(xi−Oi)−ωzi, (1)

żi = α
(

µ− r2
i

)
zi +ω (xi−Oi) , (2)

where ri =
√

(xi−Oi)
2 + z2

i , amplitude of the oscillations are given

by A =
√µ , ω specifies the oscillations frequency (in rad s−1) and

relaxation to the limit cycle is given by 1
2α µ .

This oscillator contains an Hopf bifurcation from a stable fixed
point at (xi,zi) = (Oi,0) (when µ < 0) to a structurally stable, har-
monic limit cycle, for µ > 0.

The following expression for ω allows an independent control of
speed of the ascending and descending phases of the rhythmic signal
[18], meaning an independent control of the stance ωst and the swing
durations ωsw,

ω =
ωst

1+ e−qzi
+

ωsw

1+ e−qzi
. (3)

The stance phase frequency, ωst , is determined based on the constant
swing frequency, ωsw, and on the desired duty factor, β as follows:

ωst =
1−β

β
ωsw (4)

Each CPG takes a set of parameters for the modulation of the gen-
erated trajectories for the specified joint. These are:

• µ , switches on/off the rhythmic solution, and for µ > 0 modulates
the amplitude of oscillations;

• β , changes the walking velocity since it controls the stance dura-
tion of the generated movement.

All these parameters will be tuned by the optimization system de-
scribed in section 3, controlling the parameters for a locomotion that
maximizes a fitness. The parameters α , ωsw and a are set a priori.
Parameter ωsw specifies the swing phase duration, which is kept con-
stant. Its value depends on the desired speed of movements and on
the capabilities of the robotic platform.

2.3 Interlimb Coordination

We have four CPGs, one for each Hip joint. These four CPGs are
coupled in order to achieve the limb coordination required in a walk-
ing gait pattern. The applied coupling scheme is depicted in fig 1 and
is given by

[
ẋi
żi

]
=

[
α

(
µ− r2

i
) −ω

ω α
(
µ− r2

i
)
][

xi−Oi
zi

]
+ ∑

j 6=i
R(θ j

i )
[

x j−O j
z j

]
. (5)

The linear terms are rotated onto each other by the rotation matrix
R(θ j

i ), where θ j
i is the required relative phase among the i and j

hip oscillators to perform the gait (we exploit the fact that R(θ) =
R−1(−θ)).

The final result is a network of oscillators with controlled phase
relationships, able to generate more complex, synchronized behavior
such as locomotion. Due to the properties of this type of coupling
among oscillators, the generated trajectories are stable and smooth
and thus potentially useful for trajectory generation in a robot.

The generated xi solution of this nonlinear oscillator is used as the
control trajectory for a Hip joint of the robot limbs. These trajectories
encode the values of the joint’s angles (◦) and are sent online for the
lower level PID controllers of each limb joint. The knee joints are
controlled as simple as possible. When the limb performs the swing
phase, the knee flexes to a fixed angle. When performing the stance
phase, the knee extends to other angle.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

12



Figure 1. Each leg lags one quarter of a cycle, in the sequence: Left Fore,
Right Hind, Right Fore, Left Hind

3 OPTIMIZATION SYSTEM

In this section, we explain how the limbs trajectories are optimized,
in order to obtain the best walking pattern locomotion. We intend to
maximize the velocity and wide stability margin, and to minimize
the vibration of the robot. A scheme of the optimization system is
depicted in fig 2.

CPGs generate trajectories for the robot limbs, modulated accord-
ing to a set of parameters. A chromosome is constituted by the re-
quired set of these parameters such that the robot performs the de-
sired locomotion gait.

Initially, a random initial population of chromosomes is generated.
After the evaluation of all chromosomes of the population, a genetic
algorithm generates a new population to be tested. The stopping cri-
terion of the optimization system is the performed number of itera-
tions.

Initial

Population
Fitness

Evaluation

Genetic

Algorithm

parameters

CPGs Robot

Servos

 

Stopping

Criteria?

vibration

velocity

wsm

Best 

chromosome

yesno

Locomotion System

Figure 2. Optimization Locomotion System

3.1 Optimization of Parameters

As previously described, trajectories are generated and modulated by
the proposed network of CPGs, by explicitly changing the CPGs pa-
rameters. These are the Amplitude (µ), the Offset(O), and the stance
knee value, for each limb. Further, there is the swing frequency (ωsw)
for the overall network. Meaning a total of 13 parameters.

Fore and hind limb trajectories (LF, RF) (LH, RH) have the same
amplitude, offset and frequency but a different relative phase. they
have a relative phase of π among them.

Taking in regard these considerations, we can minimize the num-
ber of parameters it is required to optimize. The set of parameters
is given by: amplitude of the front limbs (µFL), amplitude of the
hind limbs (µHL), front limbs knee angle (KFL),hind limbs knee an-
gle (KHL), front limbs offset (OFL), hind limbs offset (OHL) and
the frequency of Swing (ωsw). This yields a total of 7 parameters
to tune.The limits of each parameters are defined in tab 1.

3.2 Limits of the parameters
The range of each parameter is defined in tab 1. These boundaries di-
rectly depend on the physics limits of the Aibo Ers-7 robot. The val-
ues of µFL and µHL are limited by the maximum range that the AIBO
Hip joints may have. Noteh that amplitude is given by

√µ . Offset
values OFL and OHL for the hips are limited by the same ranges and
the calculated amplitude values, µFL and µHL, respectively .

We calculate the maximum and minimum values for each knee
stance angle, such that leg collision does not occur during locomo-
tion. This is given by

KFLmax1 =−(OFL +
√

µFL/2)+50 (6)

KFLmax2 =−(OFL−√µFL/2)+50 (7)

KFLmin1 =−(OFL +
√

µFL/2)+20 (8)

KFLmin2 =−(OFL−√µFL/2)+20 (9)

KHLmax1 =−(OHL +
√

µHL/2)+40 (10)

KHLmax2 =−(OHL−√µHL/2)+40 (11)

KHLmin1 =−(OHL +
√

µHL/2)−5 (12)

KHLmin2 = (OHL−√µHL/2)−5 (13)

where OFL and OHL are the offsets of the fore and hind
hip joints, respectively. Finally, knee angles are given by
[max(min1,min2)min(max1,max2)].

Table 1. Parameter Limits

Parameters Lower Upper

µFL 0.0001 3600

OFL(◦) −1600+ µFL/2 400−µFL/2

µHL 0.0001 3600

OHL(◦) −400+ µFL/2 1600−µHL/2

ωsw(rad/s) 1 12

KFL(◦) max(KFLmin1,KFLmin2) min(KFLmax1,KFLmax2)

KHL(◦) max(KFLmin1,KFLmin2) min(KHLmax1,KHLmax2)

3.3 Genetic Algorithm
Genetic Algorithms (GA) start from a pool of points, usually referred
to as chromosomes. Chromosomes represent potential optimal solu-
tions of the problem being solved. In order to implement a GA, it
is necessary to define the representation of the search space and a
fitness function which permits the comparison between the differ-
ent chromosomes. Furthermore, genetic operators and the selection
mechanism must also be defined.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

13



One or several optimal combinations of amplitude and offset for
the hip oscillators, offset for the knees and swing frequency are nec-
essary in order to generate the desired forward locomotion move-
ment, as explained before. Each chromosome consists in 7 CPG free
parameters, as shown in fig. 3, that span our vector space for the op-
timization.

Chromosome

Figure 3. A chromosome is made of seven free parameters.

In our optimization system, we begin the GA search by randomly
generating an initial population of chromosomes.

The GA selection operator assures that chromosomes are copied
to the next generation with a probability associated to their fitness
values. Therefore, this operator mimics the survival of the fittest in
the natural world. Although selection assures that in the next gener-
ation the best chromosomes will be present with a higher probabil-
ity, it does not search the space, because it just copies the previous
chromosomes. The search results from the creation of new chromo-
somes from old ones by the application of genetic operators. The
crossover operator, takes two randomly selected chromosomes; one
point along their common length is randomly selected, and the char-
acters of the two parent strings are swapped, thus generating two
new chromosomes. The mutation operator, randomly selects a posi-
tion in the chromosome and, with a given probability, changes the
corresponding value. This operator does assure that new parts of the
search space are explored, which selection and crossover could not
fully guarantee.

In this work, real representation of the variables was considered.
So, each vector consists of a vector of real values representing the
decision variables of the problem. Genetic operators were chosen
taking into account this representation. In order to recombine and
mutate chromosomes, the Simulated Binary Crossover (SBX) and
Polynomial Mutation were considered, respectively. These operators
simulate the working of the traditional binary operators [3]. In or-
der to select chromosomes for the application of genetic operators, a
tournament selection was implemented.

3.4 Fitness Specification

The performance of each chromosome is evaluated according to the
robot body vibration ( fa), the forward velocity (v) and the Wide Sta-
bility Margin WSM.

3.4.1 Vibration

We consider that a good gait should have less vibration, because the
robot is subjected to less strain. In order to calculate the total vibra-
tion we sum the standard deviation of the measures of the (ax,ay,az)
accelerometers built-in onto the robot, similarly to [19, 6, 20], as fol-
lows:

fa = std(ax)+ std(ay)+ std(az) (14)

3.4.2 Wide Stability Margin

For stability, we calculate the wide stability margin [21] (WSM). This
is a measure of the locomotion stability that provides the shortest dis-
tance between the projection of the center of mass in the ground and
the polygon formed by the vertical projection in the ground of robot
feet contact points. A gait is considered better when has a higher
WSM.

3.4.3 Velocity

We calculate the forward velocity using the traveled distance of the
robot during the evaluation of each chromosome of the population,
i.e. during 12 seconds. A gait is considered better if it achieves higher
velocities.

We intend to determine the best gait considering minimization of
the body vibration and maximization of the velocity and wide stabil-
ity margin. The normalize fitness is given by:

fitnesstotal = Wa ∗ fa
fa,max

+Wv ∗ 1
v
∗ vmin +Wwsm ∗ e−

wsm
wsmmax , (15)

where Wa,Wv and Wwsm are the vibration, velocity and WSM weights,
respectively.

For each fitness component to have the same significance, we nor-
malize the values of the fitness components. We have determined
that vmin = 10(mm/s), fa,max = 0.4 and wsmmax = 65. These are the
maximum values that the fitness components may achieve.

3.5 Weights of the fitness

We apply weights to each component of the fitness function, sim-
ilarly to [20]. We have three weights, one for each fitness compo-
nent: Wa (vibration weight), Wv (velocity weight) and Wwsm (WSM
weight). The sum of the three components is always 1, as follows:

Wa +Wv +Wwsm = 1. (16)

We implemented a method for the computation of the weights such
that the component weights change depending on the value of the
components. Lower velocities give higher weights for the velocity
component but higher velocities give lower weights for the corre-
sponding component. This method is shown in fig 4. It is based on a
negative exponential, such that the higher the velocity, the lower the
velocity weight (Wv), as follows:

Wv = 0.7× exp−(v×0.01) (17)

We want to minimize the overall vibration but to maximize the
velocity. Then, we want lower vibrations for high velocities. This is
achieved by setting

Wa = 0.7−Wv (18)

Finally,

Wwsm = 0.3 (19)

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

14



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Velocity(mm/s)

W
e
ig

h
t

Figure 4. Weights Wv (solid line) and Wa (dashed line) for different
velocity values. The sum between Wv and Wa is the dotted line.

4 SIMULATION RESULTS
In this section, we describe the experiment done in a simulated ers-7
AIBO robot using Webots [17]. The working scneraio is shown in
fig 5. Webots is a software for the physic simulation of robots based
on ODE, an open source physics engine for simulating 3D rigid body
dynamics. The model of the AIBO is as close to the real robot as the
simulation enable us to be. We simulate the exact number of DOFs
and mass distributions.

Figure 5. Simulation experimental setup.

The ers-7 AIBO dog robot is a 18 DOFs quadruped robot made by
Sony. The locomotion controller generates trajectories for the joint
angles of the hip and knee joints in the sagittal plane, that is 8 DOFs
of the robot, 2 DOFs in each leg.

At each sensorial cycle (30 ms), sensory information is ac-
quired.Each chromosome is evaluated during 12 seconds. We apply
the Euler method with 1ms fixed integration step, to integrate the
system of equations. At the end of each chromosome evaluation the
robot is set to its initial position and rotation.

In our implementation, the optimization system ends when the
number of generations exceeds 50 generations. We depict results
when a population was established with 50 chromosomes and a pre-
set number of 50 generations was set.

The generated gaits have a fixed duty factor β = 0.75 and a relative
phase ϕLH = 0.75.

Table 2 contains the Best, Mean and standard deviation (SD) val-
ues of the solutions found (in terms of fitness function and time) over

10 runs.

Table 2. Performance of GA algorithm in the optimization system

Fitness Time (hours)
Best Mean SD Best Mean SD

0.2727 0.2973 0.0212 3.5350 4.0843 2.0975

Fig. 6 shows the evolution of all the 10 runs (lighter lines), best
(solid line) and mean (dashed line) fitness function value over 50
generations. The best individual has a fitness value of 0.2727 that
was achieved at generation 50. The best run took 3h53 min (CPU
time) and each generation took in average 294.07 seconds.

0 10 20 30 40 50
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

F
it

n
e
s
s

Generations

Figure 6. Fitness evolution during 50 generations.

Table 3, shows the parameters values of the best chromosome of
the first and last generation.

Table 3. Optimization Parameters Results

Parameters 1st Generation 50th Generation

µFL 2692.6 66.26

OFL(◦) −12.77 8.19

µHL 1954.5 252.81

OHL(◦) 9.21 15.87

ωsw(rad/s) 11.87 10.62

KFL(◦) 81.64 52.65

KHL(◦) 30.34 5.00

Fitness 0.3573 0.2727

Fig. 7 depicts the evolution of the measurements of sensor data,
vibration, velocity and WSM of the best chromosome of each gener-
ation.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

15



0 10 20 30 40 50
0

0.1

0.2

V
ib

ra
ti

o
n

Generations

0 10 20 30 40 50
40

60

80

100

V
e

lo
c

it
y

Generations

0 10 20 30 40 50
0

20

40

W
S

M

Generations

Figure 7. Evolution of the sensor measurements during the 50
Generations.

Table 4 lists the values of the vibration, velocity and WSM
for the first and last generation. Velocity is 0.08623(ms−1) and
0.05098(ms−1) for the first and 50th generation, respectively. These
values may seem much worst then those achieved by previous works,
specially in the RobotCup domain. However, the robot configuration
was the required to achieve higher velocities: the robot knees were
completely folded. In our work, we just try to achieve a higher veloc-
ity for a crawl gait. In fact, it is a slow gait since three legs are kept in
ground contact. But gait specification, duty factor and relative phase,
were maintained as expected.

Table 4. Optimization Sensor Results

Generation Vibration Velocity(mm/s) wsm(mm) Fitness
1st Generation 0.177 80.623 3.508 0.357

50th Generation 0.0233 50.980020 31.253 0.271

5 Conclusion

In this article, we have addressed the locomotion optimization of a
quadruped robot that walks with a walking gait.

A locomotion controller based on dynamical systems, CPGs, gen-
erates quadruped locomotion. These CPG parameters are tuned by an
optimization system. This optimization system combines CPGs and
a genetic algorithm. As a result, sets of parameters obtained by the
genetic algorithm were adequate for the implementation of a loco-
motion walking gait with a velocity of 50.98 (mm/s), low vibration
and a high wide stability margin.

Currently, we are using other optimization methods such as evo-
lutionary strategies and electromagnetism algorithm. We will extend
this optimization work to address other locomotion related problems,
such as: the generation and switch among different gaits according
to the sensorial information and the control of locomotion direction.

We further plan to extend our current work to implementation on
the Aibo ers7 the locomotion optimization similarly to [2].

6 Acknowledgments
Work supported by the Portuguese Science Foundation (grant
PTDC/EEA-CRO/100655/2008).

REFERENCES
[1] Luiz Castro, Cristina Santos, Miguel Oliveira, and Auke Ijspeert, ‘Pos-

tural control on a quadruped robot using lateral tilt: A dynamical sys-
tem approach.’, in EUROS, volume 44 of Springer Tracts in Advanced
Robotics, pp. 205–214. Springer, (2008).

[2] Sonia Chernova and Manuela Veloso, ‘An evolutionary approach to
gait learning for four-legged robots’, in In Proceedings of IROS’04,
(September 2004).

[3] R.B. Deb, K. Agrawal, ‘Simulated binary crossover for continuous
search space.’, Complex Systems, 9(2), 115–149, (1995).

[4] Sarah Degallier, Cristina Santos, Ludovic Righetti, and Auke Ijspeert,
‘Movement generation using dynamical systems: a humanoid robot per-
forming a drumming task’, in IEEE-RAS International Conference on
Humanoid Robots, (2006).

[5] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

[6] Dragos Golubovic and Huosheng Hu, ‘Evolving locomotion gaits for
quadruped walking robots’, Industrial Robot: An International Journal,
32, 259 – 267, (2005).

[7] S. Grillner, ‘Locomotion in vertebrates: central mechanisms and reflex
interaction.’, Physiological Reviews, 55, 247–304, (1975).

[8] S. Grillner, ‘Neurobiological bases of rhythmic motor acts in verte-
brates’, Science, 228(4696), 143–149, (1985).

[9] Freyr Hardarson, Stability analysis and synthesis of statically balanced
walking for quadruped robots, Ph.D. dissertation, KTH, 2002.

[10] Gregory S. Hornby, Seichi Takamura, Takashi Yamamoto, and
Masahiro Fujita, ‘Autonomous evolution of dynamic gaits with two
quadruped robots’, IEEE Transactions on Robotics, 21, 402–410,
(2005).

[11] Gia Loc Vo Tran Duc Trong Young Kuk Song Ig Mo Koo, Tae
Hun Kang and Hyouk Ryeol Choi, ‘Biologically inspired control of
quadruped walking robot’, International Journal of Control, Automa-
tion and Systems, 7(4), 577–584, (2009).

[12] K. Inagaki and H. Kobayashi, ‘A gait transition for quadruped walking
machine’, Proceeding of the 1993 IEEE/RSJ International Conference
on Intelligent Robots and Ssytems, (1993).

[13] Min Sub Kim and William Uther, ‘Automatic gait optimisation for
quadruped robots’, in In Australasian Conference on Robotics and Au-
tomation, (2003).

[14] Nate Kohl and Peter Stone, ‘Machine learning for fast quadrupedal lo-
comotion’, in in The Nineteenth National Conference on Artificial In-
telligence, pp. 611–616, (2004).

[15] Vı́tor Matos, Cristina P. Santos, and Carla M. A. Pinto, ‘A brainstem-
like modulation approach for gait transition in a quadruped robot’, in
IROS, pp. 2665–2670, (2009).

[16] R. B. Mcghee and A. A. Frank, ‘On the stability properties of
quadruped creeping gaits’, Mathematical Biosciences, 3(1-2), 331–351,
(August 1968).

[17] O. Michel, ‘Webots: Professional mobile robot simulation’, Journal of
Advanced Robotics Systems, 1(1), 39–42, (2004).

[18] Ludovic Righetti and Auke Jan Ijspeert, ‘Pattern generators with sen-
sory feedback for the control of quadruped locomotion’, IEEE Interna-
tional Conference on Robotics and Automation, (2008).

[19] Thomas Röfer, ‘Evolutionary gait-optimization using a fitness function
based on proprioception’, in RobuCup, pp. 310–322, (2004).

[20] Manish Saggar, Nate Kohl, and Peter Stone, ‘Autonomous learning of
stable quadruped locomotion’, in RoboCup2006: Robot Soccer World
Cup X. Springer Verlag, (2007).

[21] S. Song and K. Waldron, Machines that Walk: The Adaptive Suspension
Vehicle, MIT Press, Cambridge, 1989.

[22] Kobayashi Toshiya Inoura Takashi Masuda Tatsuya Tsujita, Kat-
suyoshi, ‘A study on adaptive gait transition of quadruped locomotion’,
in none, pp. 2489 – 2494, Tokyo, 113, Japan, (2008).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

16



Evaluating Reinforcement Learning Methods for Robot
Navigation in Home Environments

Ruben Gerlach

Abstract. Developing navigation systems for robots that are effec-
tive while preserving the safety of near inhabitants is one of the hard
challenges modern robot industry is facing. In this paper we present
a promising approach for training such strategies using Reinforce-
ment Learning architectures that are independent of the maps they
are trained on or the number of inhabitants around. For this purpose
we use state extrapolation to encode a state signal that presents the
essence of a given situation without losing any vital information.

1 Introduction

In our present world robots gain ongoing popularity in industry and
home environments. Be it as autonomous vacuum cleaners or me-
chanical mans’s best friend, especially commercial marketing is in-
creasingly being focused on. At the same time, navigation and re-
spect to the inhabitants leave room for improvement. In the described
cases, collisions with people or interior may be harmless, yet as the
range of tasks for robots increases, a growth of mass and size is to
be expected. Solutions need to be found that guarantee the safety of
the users while the underlaying navigation becomes as efficient as
possible to allow precise and quick accomplishment of tasks. In our
study ([4]) we develop several concepts that address robot navigation
in home environments with the respect to the appearing inhabitants
using flat and hierarchical reinforcement learning and compare them
in a realistic simulation setting. We show that reinforcement learning
is able to generate promising strategies that are much more efficient
and safe than the hand coded solutions we created for comparison.
The results of this study are presented in this paper.

2 Reinforcement Learning Theory

Reinforcement Learning (RL) is a popular method to let an agent
learn problem solving strategies in unknown and complex domains.
In each state st the agent takes an action at, where t denotes a dis-
crete time step. The action is performed in the environment and the
agent receives a resulting reward rt+1 that denotes how well the
agent reacted, as well as the resulting state st+1. The given rewards
are defined by the user to achieve a certain goal, e.g. in our case
negative rewards (i.e. punishments) would be given when the agent
causes a collision with an inhabitant so the agent would avoid these
situations in the future. To maximize the total amount of rewards re-
ceived during an episode or in continuous tasks, a state-action value
function is maintained, that maps from state-action pairs to expected
accumulated rewards following the current strategy. Given the true,
or optimal state-action value function, one would only have to choose
the action that returns the highest value in the current state and the
agent would follow the optimal strategy in the means of the reward

distribution. Yet as the value function is unknown at the beginning of
the training, it has to be updated according to the experience of the
agent and with a certain probability exploratory actions have to be
taken in contrast to best rated actions adjust actions that are under- or
overrated. The successful application of RL methods in the field of
agent navigation and similiar cases has been shown widely. RL meth-
ods have been applied for the popular robot soccer leagues known as
Robocup, see for example [13] and [9], in First-Person-Shooters, see
[5], strategy games unit navigation (presented in [7]) and many more.
There exist several algorithms to update value functions in RL tasks
that perform well in practise, see [14] for a detailed description. In
our study we have implemented and compared the most popular al-
gorithms such at Sarsa, Q-Learning, different Monte Carlo methods
and more. The most successful in our case have been proven to be
the Sarsa(λ) algorithm from [10], see [6] for an extensive analysis,
combined with replacing traces (compare [12]), as well as the Hierar-
chical Semi-Markov Q-Learning (HSMQ) algorithm. HSMQ works
in principle like Sarsa(λ), except that there exist several hierarchy
layers where each layer may define non atomic subtasks that can be
chosen as if they were common actions. These subtasks call a lower
layer in the hierarchy that is executed until a state is reached that
is defined terminal for this subtask. When a subtask is finished the
agent will return to the previously active layer using the sum of re-
wards that have been gained during the execution of the subtask as
reward for the chosen subtask as if they were common action and re-
ward (see [3]). For function approximation we use Tile Coding, see
[11] for a brief overview, and neural networks using the Resilient
Propagation (RPROP) update algorithm, see [8] or [1].

3 The Testbed

As RL tasks require up to millions of repetitions to acquire success-
ful strategies, using a real robot in a real environment would take
unsatisfying long. For this purpose we made initial tests with the
popular Player/Stage framework (see [2]) to be used as a testbed
that also would have been fully compatible to our robot that uses
the Player framework as well. We found out that Player/Stage uses a
time critical update function and hence experiences great simulation
differences when not being run in real time, so even if a simulation,
not much time would have been won in our case. For this reason
we decided to implement our own time step independent simulation
testbed.

3.1 Tested Maps

We used three different maps to train and test our agents on. The
main map we used is shown in Fig. 1a). In this the different agents

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

17



have been trained and tested, while we used Fig. 1b) and Fig. 2 to
verify the trained strategies. The maps Simplerooms and Section are
both taken from [2]. The waypoints for the agents and inhabitants
have been set by hand such that they are equally distributed over the
maps.

Figure 1. Maps: a) Simplerooms (from [2], reworked) b) Arena.

Figure 2. Map: Section (from [2], reworked).

3.2 The Inhabitants
In our testbed we are able to add as many inhabitants as needed with
individual waypoints for each of them. The inhabitants choose ran-
domly among a set of given waypoints, run up to them and then re-
peat. If at any time the agent is in the way, the inhabitant stops and
waits for the agent to clear the path. There were other possibilites for
our inhabitants to react if an agent crosses the way, such as ignoring
the agent and move on, risking a collision, or even evade the situa-
tion themselves. We took the described behavior because its close to
the reaction of a real human without making it the agent too easy to
escape the situation.

3.3 Handcoded Solutions
For comparison reasons we wrote different hand coded solutions
to compare the RL strategies with, namely Random, Planner and
Evade. The Random agent decides randomly between following the
planner to move to the current waypoint or escape into one of four
possible directions. This behavior can be used to compare if an RL
agent is able to improve the behavior at all. The Planner agent moves
up to the waypoints all time ignoring any inhabitants. This agent al-
lows to estimate the probability of collisions and the theoretical max-
imum speed for reaching waypoints under the given circumstancens

(i.e. the current map and number of inhabitants). The last agent uses
the extrapolation unit that is also used within our RL agents: From
the current state, the outcome of the possible evade actions (moving
into one of four directions) is estimated, as well as the actions of
the inhabitants regarding their current velocity and orientation. For
each of these extrapolated states, we measure the distance between
the agent and the closest inhabitant leading to four different values. A
fifth value is generated using the current position of the agent, which
we use to represent the outcome of the planner unit. We chose not to
take into account the extrapolated position after following the plan-
ner as we would like to be independent of specific implementation
details. The Evade agent decides upon these five values which action
to take: As long as the planner distance is greater than 3 meters, this
action is taken, else the evade action leading to the greatest distance
to the inhabitants is chosen. The distance for the planner action are
variable and 3 meters have been indicated to be the most successful
value by previous testruns.

3.4 Measurement of Success
Finally we measure different categories to compare the hand coded
solutions and the various RL agents: First of all, we take into ac-
count the ratio of unsuccessful episodes (i.e. episodes that end in a
collision) to all episodes, which is the main indicator for how suc-
cessful the agent is. Categories of second order are the average speed
per waypoint and the average blocking of inhabitants by the agent.

4 The Setup
In the software that was developed for our study, we are able to com-
bine all implemented state representations, action macros, RL algo-
rithms (such as Sarsa(λ) or HSMQ), value function approximators
(we used tile coding and neural networks), rewarding systems and
RL exploration strategies individually. The implemented candidates
for each category are described in the following sections:

4.1 State Encoders
The state encoder is the unit that creates a multidimensional state
vector of the observed environment to be used by the RL algorithm.
The values of the state vector are scaled to [0, 1] for tile coding and
[-1, 1] for the use of neural networks.

4.1.1 AllRelative

For every single inhabitant the following values are encoded:

• Angle from agent to inhabitant
• Angle from inhabitant to angle
• Distance between agent and inhabitant
• Velocity of the inhabitant
• Velocity of the agent

4.1.2 AllRelativeNoSpeeds

Like AllRelative, omitting the velocities.

4.1.3 AbsoluteAngles

Like AllRelativeNoSpeeds, this time using absolute angles, i.e. the
angles now have values in [0, π] (instead of [−π, π] before).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

18



4.1.4 AreaBased

The map the agent is trained on is manually divided into reasonable
areas. For the agent and each inhabitant, the id of the current area is
encoded. This might enable the agent to learn when to omit specific
areas because they are currently frequented by the inhabitants. Fig.
3 shows the 43 different areas for the map Simplerooms we created.
Note that in this case the complexity already is 433 = 79.507 for two
inhabitants and the agent, not including different actions, let alone the
possibility of bigger maps.

Figure 3. Simplerooms manually divided into 43 areas.

4.1.5 ClockDescr

For each inhabitant, the distance and the relative position to the agent
are encoded, see fig. 4. In addition, the distance from the agent to the
closest wall in every direction is written, to allow safe navigation in
the environment.

Figure 4. Relative position of an inhabitant to the agent, labeled by the
angle α.

4.1.6 OrthogonalDescr

Like ClockDescr, though instead of distance and angle the relative
position is encoded by the distance vector, i.e. its coordinates x and
y.

4.1.7 ClockDescrWithOrientations

Like ClockDescr, this time adding the orientation of every inhabitant.

4.1.8 ClockDescrWithPosId

Like ClockDescr, this time encoding the x and y coordinates of the
agent instead of the distances to the walls, to allow learning the spe-
cific properties of each part of the map.

4.1.9 MultiCake

The previously described state spaces all have one severe drawback:
Their complexity increases with the number of inhabitants on the
map. To fight this issue, the state encoder MultiCake was created: For
each of the four directions, the distance to the closest inhabitant is
remembered, hence reducing the state signal by dropping inhabitants
that are further away or forming a group.

4.1.10 MultiCakeWithOrientations

Like MultiCake, but removing all inhabitants that face away from the
agent and hence may not have a significance to the current situation.

4.1.11 MinimalDistancePredictor

For each of the actions Stop and Move into one of four directions, the
current situation is extrapolated for some frames, i.e. every inhabitant
is moved in respect to its current velocity, as well as the agent by the
velocity of the chosen action. After the extrapolation, the closest dis-
tance from the agent to any inhabitant is measured and remembered.
This leads to five different values for each of the named actions that
represent the state signal.

4.2 Action Sets
The action set of an agent defines its options to interact with the envi-
ronments. Depending on the given state encoder, we try to choose an
action set that integrates with the described features of the environ-
ment. E.g. it makes no sense to use an action set that defines actions
for moving into one of the four directions up, down, left and right
when the state encoding only describes angles and positions relative
the orientation of the agent. The action sets we have tested are de-
scribed in the following sections.

BackwardOrPlanner: A simple action set that defines the two ac-
tions Follow the Planner and Move Backwards.

BackwardForwardOrPlanner: Like BackwardOrPlanner but
adding the third action Move Forward.

PlannerOrCrossNav: Defines movement actions to move up,
down, left and right or following the planner.

PlannerOrRoseNav: Like PlannerOrCrossNav but adding addi-
tional movement directions between the four given, resulting in
actions for evading into eight different directions plus Follow the
Planner.

PlannerOrNonAtomicCrossNav: Like PlannerOrCrossNav, only
this time instead of moving into one of the four directions, a target
point some distance away is given to which the agent moves. The
action is hence non atomic but enduring several frames of simu-
lation. If a wall is closer than the target point, the target point is
brought forward.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

19



PlannerOrNonAtomicCrossNavAreaBased: Invented for the
state encoder AreaBased: Like PlannerOrCrossNav, but the agent
will move into the chosen direction until the state signal changes
to prevent great variances due to randomness in the learning
process while the state (the occupied areas) remains unchanged.

HierarchicalEvading: To allow the use of hierarchical RL architec-
tures, this action set features the actions Follow the Planner and
RLEvade, which itself points to a secondary RL hierarchy that
may use any configuration to achieve evading from the inhabi-
tants.

CrossNav: Created to be used in the lower level of a hierarchical
setup that learns to evade the inhabitants, this action set only de-
fines actions for moving into one of the four directions up, down,
left and right.

4.3 RL Algorithms
Allthough many papers suggest Sarsa(λ) to be a very successful al-
gorithm, we wanted to measure the performance of different RL al-
gorithms to assure the best results. These are the algorithms we im-
plemented and compared:

• One-Step Q-Learning
• One-Step Sarsa
• First-Visit MC
• Off-Policy First-Visit MC
• Sarsa(λ)
• Watkins’ Q(λ)
• Peng’s Q(λ)
• Naive Q(λ)
• HSMQ

See [14] for details on the algorithms.

4.4 Rewards
We experimented with different events and values for the rewarding
systems. Only the two final configurations are presented here. Table
1 shows the events for the flat RL architectures, the events for the sec-
ondary layer of the hierarchical architecture are given in Table 2. The
first layer, that decides between Follow the Planner and RLEvade ba-
sically receives the same rewards as the flat architecture except for
the reward of the evade action which is the accumulated rewards that
was generated by the evade layer. More information about the hier-
archical organization of the navigation task will be given later.

Event Reward
Collision −1
Blocking one or more inhabitants −0.05
Evade action −0.0001
Following the planner 0

Table 1. Rewards in the flat RL architecture.

5 Results
In the initial testruns, we trained reasonable combinations of the pre-
viously described state encodings and action spaces using Sarsa(λ)

Event Reward
Collision −1
Blocking one or more inhabitants −0.01
else −0.0001

Table 2. Rewards in the second hierarchy layer of the hierarchical
architecture.

State Encoder Action Set Collisions (%) Duration Blocking (%)
AllRelative BackwardOrPlanner 33.50 202.27 3.24
AllRelative BackwardForwardOrPlanner 29.60 250.02 3.86
AllRelativeNoSpeeds BackwardForwardOrPlanner 34.50 319.80 4.97
AbsoluteAngles BackwardForwardOrPlanner 35.60 224.58 4.47
AreaBased PlannerOrCrossNav 4.20 601.82 0.15
AreaBased PlannerOrNonAtomicCrossNavAreaBased 1.40 447580 0.12
ClockDescr PlannerOrCrossNav 0.00 423.30 0.00
ClockDescr PlannerOrNonAtomicCrossNav 1.10 2481800 0.01
ClockDescrWithOrientations PlannerOrCrossNav 0.20 461.27 0.00
ClockDescrWithPosId PlannerOrCrossNav 2.30 495.80 0.15
MultiCake PlannerOrCrossNav 4.30 464.96 0.22
MultiCakeWithOrientations PlannerOrCrossNav 0.00 ∞ 0.00
MinimalDistancePredictor PlannerOrCrossNav 0.10 329.61 0.01
MinimalDistancePredictor PlannerOrRoseNav 1.80 325.67 0.16
MinimalDistancePredictor PlannerOrNonAtomicCrossNav 85.80 20160 2.13

Table 3. Comparison of different state encodings and action spaces on the
map Simplerooms with one inhabitant. The agent use Sarsa(λ) with γ = 0.8

and λ = 0.7, Tile Coding with one Tiling and static exploration with
ε = 0.05.

on the map Simplerooms with one inhabitant over 50, 000 episodes.
The results of these testruns are shown in Table 3.

It was early observable that the state encoder AllRelative in all
its variants was unable to let the agent learn efficient evading be-
havior. Because no information about walls are encoded, the col-
lision rate on the map Simplerooms is higher than it would be on
the map Arena. The state encoder ClockDescr is able to achieve a
collision rate of 0% within the first 50, 000 episodes, drawback of
course is the growing complexity depending on the number of inhab-
itants encoded. Even with only two inhabitants the training process
takes much longer and converges against a significantly higher fail-
ure ratio. The variant ClockDescrWithPosId, that encodes the abso-
lute position of the agent instead of the distances to the surround-
ing walls, achieves a slightly higher efficiency in terms of speed, in
this case the trained strategy depends on the map it was trained on,
of course. The state encoder AreaBased shows similiar behavior: A
clear learning success can be noted, the complexity though again de-
pends on the number of inhabitants and the learned strategy is also
only valid on one map. The state encoder MultiCake reaches good
performance and is in addition independent of the number number
of inhabitants. The variant MultiCakeWithOrientations however, in
which inhabitants that face away from the agent are ignored, is not
able to produce any useful strategy at all. The agent only executes
evading actions and does not follow the planner anymore. MultiCake
is only outperformed by MinimalDistancePredictor which achieves a
notable collision rate of 0.1% within the first 50, 000 epsiodes and is
also independent of the number of considered inhabitants. Moreover
no other state encoder is able to produce such short pathes. From the
actions sets PlannerOrCrossNav is the only one that produces con-
vincing results, any other one performs clearly worse. Altogether the
combination of MinimalDistancePredictor and PlannerOrCrossNav
seems promising and fast. In supplemental trainings the failure ra-
tio could be improved and the advantage over the other candidates
could be emphasized. In the following sections this configuration is
focused and the results of further optimizations are presented.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

20



5.1 Improving the performance
Comparable papers suggest hierarchical architectures to be a very
powerful way to increase the performance of RL applications as they
drastically reduce the complexity by distributing decisions over sev-
eral RL layers. In our study we developed a HSMQ architecture that
divides the navigation task into two RL layers: The first decides
whether to follow the planner or to take an evade action, the sec-
ond layer represents the evade action by using the action set Cross-
Nav. Episodes are ended whenever the agent reaches a distance of
at least 2 to each inhabitant or a collision occurs. To maximize the
performance of the agents we have in addition carefully explored
the effects of tuning the different parameters, applying the different
RL algorithms and changing the function approximations on the flat
RL architecture and both layers of the hierarchical architecture. The
influence of these variations shall exemplarily be discussed for the
evade layer of the HSMQ architecture.

5.1.1 Tuning γ

To start off we began tuning the γ parameter using the popular
Sarsa(λ) algorithm with λ = 0.7 and Tile Coding with one tiling for
function approximation. It was to be expected that the agent would
perform better with higher values, as it would allow to forsee the out-
come of the relatively short episodes in the evade layer. Fig. 5 shows
the performance for different γ values over the first 27, 000 episodes.
Interestingly, γ = 1 has a very high rate of failure until it suddenly
drops down. γ = 0 on the other hand learns surprisingly well. Fur-
ther investigations suggest that this is due to the large generalization
we used in the function approximation in this run. It is obvious that
these results are only valid for the evading layer as its episodes are
very short compared to the other tasks we defined.

Figure 5. Comparison of different γ values on the map Simplerooms with
two inhabitants using Sarsa(λ) with λ = 0.7, Tile Coding with α = 0.1,

one tiling and six tiles per dimension, and a static exploration with ε = 0.05.

5.1.2 Applying Artificial Neural Networks

Using a finer grain of approximation generalization the outcome
looks more as expected. Fig. 6 shows the same configuration as be-
fore, this time using artificial neural networks with 160 neurons in
the hidden layer for approximation. Besides the more conventional
graphs of the performance, the final collision rate is noteably higher
which indicates that the neural networks need more time to learn the

strategies as well as several runs are needed to train nets that can
compete with a tile coding solution.

Figure 6. Comparison of different γ values on the map Simplerooms with
two inhabitants using Sarsa(λ) with λ = 0.7, articifial neural networks with

the RPROP update algorithm and a static exploration with ε = 0.05.

5.1.3 Tuning λ

Fig. 7 displays the results of testing different λ values. This time
the configurations perform as suggested by literature and compara-
ble works, λ = 0.7 shows the fastest learning behavior but the other
values do not work too bad either. Only λ = 1 performs remark-
ably worse which already shows the similarity to the Monte Carlo
algorithms that are tested in the next section.

Figure 7. Comparison of different λ values on the map Simplerooms with
two inhabitants using Sarsa(λ) with γ = 1, Tile Coding with α = 0.1, one
tiling and six tiles per dimension, and a static exploration with ε = 0.05.

5.1.4 Comparison of different RL algorithms

Now with the use of the previously evaluated parameters we trained
compared the different RL algorithms listed before. Fig. 8 shows
the results for two Monte Carlo variants, namely First-Visit MC
and Off-Policy MC, as well as the classic algorithms Sarsa and Q-
Learning. Fig. 9 compares the tested Eligibility Traces algorithms:

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

21



Sarsa(λ), Naive Q(λ), Watkins Q(λ) and Pengs Q(λ). Details about
these algorithms are given in [14], we used replacing traces in all
cases. Sarsa(λ) clearly shows the fastest convergence, Sarsa and Q-
Learning both produce a good performance as well. The Monte Carlo
variants perform suriprisingly weak but have shown convincing be-
havior when applied not to the evading controller but other tasks,
even if in no case as well as Sarsa(λ).

Figure 8. Comparison of different RL algorithms on the map Simplerooms
with two inhabitants with γ = 1, Tile Coding with α = 0.1, one tiling and

six tiles per dimension, and a static exploration with ε = 0.05

Figure 9. Comparison of different RL algorithms on the map Simplerooms
with two inhabitants with λ = 0.7, γ = 1, Tile Coding with α = 0.1, one
tiling and six tiles per dimension, and a static exploration with ε = 0.05

5.2 Final Results

Map Agent Collisions (%) Duration Blocking (%)
Flat RL 0.42 477.09 3.84
HSMQ 0.01 437.39 3.58

Simplerooms, 2 Inhabitants Evade 6.41 481.89 8.58
Planner 52.14 216.96 8.78
Random 99.72 2, 003.8 10.72

Table 4. Results of the RL agents on Simplerooms compared to the
handcoded solutions.

In this section we present the results of our approach both for the
flat RL and the hierarchical RL architectures. The final configura-
tions we found look as follows:

Flat RL: Sarsa(λ) with λ = 0.7, state encoding: MinimalDistan-
cePredictor, action set: PlannerOrCrossNav, the rewards repre-
sented in Table 1, an ε-Greedy policy with ε = 0.05 and an in-
dividual neural network with 160 neurons in the hidden layer for
each of the five possible actions using the RPROP update algo-
rithm.

Hierarchical RL: HSMQ with λ = 0.7, state encoding: MinimalD-
istancePredictor for each hierarchy layer, a decision between fol-
lowing the planner and a reference to the second layer in the first
hierarchy layer, and the action set CrossNav in the second hier-
archy layer, hence representing the evade task. The second layer
was executed until a distance of at least 2 meters was reached to
each of the inhabitants (or a collision occured and the episode was
ended anyway). The second layer received rewards as described in
Table 2, while the first layer was rewarded as described in Table
1, except that this time the reward for the evade action was not
−0.0001 but the accumulated reward of the second layer, just as
the HSMQ algorithm suggests. Furthermore an ε-Greedy policy
with ε = 0.05 and an individual neural network with 160 neurons
in the hidden layer for each of the six possible actions using the
RPROP update algorithm.

Each configuration was trained several times until convergence oc-
cured and the best results were taken for comparison with the hand-
coded solutions. At first, we show the results of the two configura-
tions on the map they have been trained on. Fig. 10 shows the graphs
for the collision rate of the HSMQ architecture where datapoints have
been measured every 10, 000 episodes using the average outcome
of 1, 000 episodes with exploration disabled. The secondary layer,
responsible for choosing the direction to which to evade, was pre-
trained in a separate run. Graphs for the duration and blocking rate
are shown in Fig. 11 and Fig. 12. The graphs show that HSMQ very
fastly generates a strategy that performs well and then needs most
of the time to balance it such that it becomes optimal or near opti-
mal. We ended the training after round about 600, 000 episodes when
there was no more improvement measureable. To evaluate the final
strategies of both the HSMQ and Flat RL architectures we tested the
final strategies over 10, 000 episodes without any learning enabled
and compared the results to the handcoded strategies, see Table 4.
It is clearly obvious that the RL strategies outperform the analytic
Evade agent in all categories. While Evade is unable to prevent too
many collisions, it is even slower in the overall performance due to
the great safety distance that it aspires. Especially the HSMQ ar-
chitecture is able to prevent almost all collisions: In the presented
testruns only a single episode failed. This confirms the success of the
simplification of the state space that is achieved through a hierarchi-
cal organization of the task.

5.3 Unknown Environments

The previous results already show that RL application for robot navi-
gation is very promising, yet for a successful application of the strate-
gies in unforseen environments or even commercial robots, the uni-
versal validity of the strategies has to be shown. For this purpose we
took the trained agents and tested them under new circumstances.
The results for these tests are shown in Table 5, again we display the
average results of 10, 000 episodes.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

22



Figure 10. Graph showing the graph of the collision rate of the HSMQ
configuration during the training. The first datapoint was measured after the

first 10, 000 episodes have been trained.

Figure 11. Graph showing the graph of the duratoin per waypoint of the
HSMQ configuration during the training. The first datapoint was measured

after the first 10, 000 episodes have been trained.

Figure 12. Graph showing the graph of the blocking rate of the HSMQ
configuration during the training. The first datapoint was measured after the

first 10, 000 episodes have been trained.

Map Agent Collisions (%) Duration Blocking (%)
Flat RL 0.04 264.88 0.02
HSMQ 0.07 171.67 0.01

Arena, 2 Inhabitants Evade 0.09 495.30 2.16
Planner 26.50 86.41 12.80
Random 98.83 4, 964 7.71
Flat RL 0.85 1, 637.7 0.02
HSMQ 1.29 457.73 0.09

Arena, 5 Inhabitants Evade 4.26 1, 524.8 0.04
Planner 39.42 86.72 12.71
Random 99.01 1, 213.2 6.87
Flat RL 0∗ 315.77 0.55
HSMQ 0∗ 297.64 0.99

Simplerooms, 1 Inhabitant Evade 0.09 322.98 4.90
Planner 32.53 194.99 4.12
Random 98.93 3, 725 5.96
Flat RL 0.91 778.13 14.66
HSMQ 0.25 670.31 6.36

Section, 4 Inhabitants Evade 2.58 944.35 12.81
Planner 42.65 438.76 2.28
Random 84.69 64, 166 0.57

Table 5. Results of the previously trained agents under new circumstances
compared to the handcoded solutions. Values marked with ∗ have been

verified in 50, 000 episodes.

The results indicate that the RL strategies developed a strong gen-
eralization for various cases. In all tests both RL agents outperform
the handcoded Evade agent and most times the categories of sec-
ond order are beaten as well. On the map Section the agents have
problems with blocking the inhabitants, as the corners in the floors
present unseen structural properties: The agent drives to these cor-
ners to evade an inhabitant but the inhabitant follows and waits for
the agent to move out of the way. Allthough in our tests this would
be counted as a blocking situation and training the agents on a map
that also owns this properties is expected to prevent this, in a real en-
vironment such behavior can be acceptable, as a human is now able
to pass the robot without problems.

5.4 Failure Analysis
Allthough the agents perform already very good in these tests there
are still rare situations in which the agent causes a collision that might
pose a danger in a real world application. It is unclear whether other
state encodings or further value function approximation optimization
would be able to produce a strategy that is without any flaws in this
sense. Instead it is to be expected that in a real world application
the agent would face more situations that are not solvable. E.g. we
would expect the agent to behave correctly when humans surround
the agent on purpose to test his reaction or similiar cases. The flaw-
less performance of the agents when only one inhabitant is present
(Simplerooms with one inhabitant, see Table 5) and a manual analy-
sis of the various failure sitations (see e.g. Fig. 13) imply this as well.
For this reason we recommend some kind of emergency system that
stops the agent when a collision is imminent or some safe distance to
the humans is crossed. With a system of this kind the effectiveness of
RL navigation can be used while keeping the inhabitants safe at all
time.

6 Summary
In this paper we presented our approach and the most compete-
tive setups for training promising Reinforcement Learning strategies
for safe robot navigation in home environments with respect to the
inhabitants. We show that state exploration is an effective way of
extracting the essence of a given situation that the agents can use

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

23



Figure 13. Example for a typical collision of the RL agents: Evading was
not possible.

to develop effective yet safe strategies that outperforms the created
handcoded solutions and that are independent of the map they were
trained on or the number of inhabitants around. Rare collision sit-
uations can be prevented by adding an emergency stop system that
activates when a security distance is breached or a similiar condition
is met. For further information we refer to [4] where we thoroughly
explore and compare several popular RL algorithms, different state
encodings, the various parameters, function approximation options
and much more.

REFERENCES
[1] A.D. Anastasiadis, G.D. Magoulas, and M.N. Vrahatis, ‘New globally

convergent training scheme based on the resilient propagation algo-
rithm’, Neurocomputing, 64, 253–270, (2005).

[2] G. Biggs, T. Collett, B. Gerkey, A. Howard, N. Koenig, J. Polo, R. Rusu,
and R. Vaughan. The player project, 2010. [Online; Stand 6. Januar
2010].

[3] T.G. Dietterich, ‘An overview of MAXQ hierarchical reinforcement
learning’, Lecture notes in computer science, 1864, 26–44, (2000).

[4] Ruben Gerlach, Roboternavigation unter Berücksichtigung men-
schlicher Bewegungsabläufe, Master’s thesis, Technische Universität
Berlin, 2010.

[5] M. McPartland and M. Gallagher, ‘Creating a multi-purpose first per-
son shooter bot with reinforcement learning’, in IEEE Symposium on
Computational Intellegence and Games, (2008).

[6] J.E. Poliscuk, ‘The Machine Learning Method: Analysis of Experi-
mental Results’, Journal of Quantitative Linguistics, 11(3), 215–232,
(2004).

[7] M. Ponsen, P. Spronck, and K. Tuyls, ‘Hierarchical reinforcement
learning with deictic representation in a computer game’, in Proceed-
ings of the BNAIC, (2006).

[8] M. Riedmiller and H. Braun, ‘RPROP-A fast adaptive learning algo-
rithm’, Proc. of ISCIS VII, (1992).

[9] M. Riedmiller, T. Gabel, F. Trost, and T. Schwegmann, ‘Brainstormers
2D-Team Description 2008’, (2008).

[10] G.A. Rummery, Problem solving with reinforcement learning, Citeseer,
1995.

[11] A.A. Sherstov and P. Stone, ‘Function approximation via tile cod-
ing: Automating parameter choice’, Lecture notes in computer science,
3607, 194, (2005).

[12] S.P. Singh and R.S. Sutton, ‘Reinforcement learning with replacing el-
igibility traces’, Machine Learning, 22(1-3), 123–158, (1996).

[13] P. Stone, R.S. Sutton, and G. Kuhlmann, ‘Reinforcement learning for
robocup soccer keepaway’, Adaptive Behavior, 13(3), 165, (2005).

[14] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 1. aufl. edn., 1998.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

24



About the evolution of neural control for walking
machines

Jörn Fischer and Thomas Ihme1

Abstract. Walking machines are complex, fragile systems, where
the complexity of its behaviour seems to determine the complexity
of its controllers. When having a closer look at simple animals the
number of neurons responsible for locomotion is still large. Different
works try to extract the essence of such ”real life” controllers in order
to implement them on robot platforms [12, 3]. If the morphology of
the robots body is quite different from the one of animals there is
another promising approach: the evolution of a neuro controller in a
simulated world with a simulated robot [10, 7, 1, 2]. In the following
article we present a method to evolve and to reuse neuro-controllers
keeping the complexity of the networks and the expense to evolve
them small. We analyze the neural entities in order to understand
them and to be able to prevent an unwanted behavior. As a last proof
the resulting networks are tested on the real walking machine to find
out the limitations of the physical simulation environment as well
as of the neural controller itself. Our real platform is a four-legged
walking machine called Hodgkin. The task it performs is an obstacle
avoidance behavior in an unknown environment.

1 Introduction

Evolving and understanding efficient neural controllers for physical
walking machines is still a challenge in the area of robotics [10].
Most researches do not concentrate on sensor driven neural control
of legged machines. The walking robots are solely designed to per-
form various motions without sensing the environment. Two articles
[6],[4] report on an evolutionary approach to create neural controllers
for locomotion and obstacle avoidance in an unknown environment.
Both articles lead to a similar result: The motor neurons of the legs
on the oposite site of a detected obstacle are inhibited. The walking
robot then tends to walk a slight curve to avoid the obstacle. The
robot fails in narrow corners or when detecting a single cylindric ob-
stacle in front of itself.

Our aim is to evolve small, simple and robust networks, which
can be coupled together in order to get a more complex behavior.
This modular neurodynamics approach is used together with a phys-
ical simulation environment to evolve controllers for real world tasks
such as obstacle avoidance. In this article this procedure is demon-
strated for a four-legged robot, called Hogkin. The following chapter
describes the equations used to simulate the neural network. Then
the main technical specifications of the platform are given. The next
chapter starts with the evolution of behavior such as locomotion and
obstacle avoidance in a physical simulation environment, which then
leads to an implementation on the real platform. Finally, the results
are discussed and an outlook is given.

1 Hochschule Mannheim, Institut fur Robotik, Paul-Wittsack Str. 10, 68163
Mannheim, Germany, email: {j.fischer|t.ihme}@hs-mannheim.de

2 A simple time discrete neuron
Biological neurons cover an enormous complexity. To simulate such
neurons in detail would assume a lot of specifications about the types
of neurons and their behavior, while even simple neural interaction
would hardly be analyzable.

The neural model we work with is much simpler and enables us to
understand even small entities with recurrent connections. The equa-
tion for the activity of such a discrete-time neuron is written down as
follows:

ϕt+1
j = θj +

n∑
i=1

wt
jio

t
i(ϕ

t
j) (1)

Here ϕj denotes the activity of neuron j, wji ∈ R is the weight
from neuron i to neuron j, θj is the bias term and oti ∈ R is the output
activity of the neuron i at time t ∈ N. The output as a function of ϕt

j

is given by the transfer function, which we choose the hyperbolic
tangent function:

otj(ϕ
t
j) = σ(ϕt

j) = tanh(ϕt
j) (2)

This neural model is simple but sufficient to be able to generate
even complex behavior. The only limiting factor is the number of
neurons and interconnections simulated.

Figure 1. The walking robot Hodgkin with four legs, five motors and an
”artificial brain” of 19 neurons.

3 The walking machine Hodgkin
Hodgkin is an unusual four-legged robot, where each leg has only
one degree of freedom. Each joint is controlled by a strong full metal

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

25



Figure 2. The simulated robot in a first step trying to walk straight.

servomotor. The levers are kept short and the body is narrow to en-
sure optimal force exploitation. The building blocks are kept modular
to be able to change components very quickly and to enable the con-
struction of different morphologies. Each of Hodgkins front legs has
a foot contact sensor. In addition an infrared sensor is placed on a
pivoting head on the front side of the robots body. All in all Hodgkin
has 5 active degrees of freedom and 3 sensors. The control of the
robot is kept on a simple but powerful board, the ”mini MBoard”,
which is able to control up to 16 motors, and which has 8 analog
sensor inputs and a size of 40 mm x 34 mm.

4 Evolving neural entities for walking
To use an evolutionary approach effectively it is necessary to have a
physics simulation environment, which simulates the robot together
with the environment as fast and as exact as possible. Our simulator
is based on ODE (Open Dynamics Engine)2 and enables an imple-
mentation, which is faster than real time and which is precise enough
to represent the corresponding behavior of a real robot. This simula-
tion environment is connected to our Evolution Program (EP). In this
program it is possible to preserve parts of a neural network which
already has an appropriate performance, it is possible to fix these
structures, and to continue the evolution by adding neurons or con-
nections or removing parts of the network which are not yet fixed.

Once the model of Hodgkin is implemented in the physics simula-
tor, a suitable fitness function has to be defined. In the simplest case
it may result from the distance the robot walks during a given time
interval. The desired neurocontroller for the pure walking task has no
input neurons and 4 output neurons providing the motor signals. For
simplicity the connections between output neurons are suppressed in
the first experiment. The simulation environment is a simple plane on
which Hodgkin should learn to walk along a straight line. The sim-
plest solution for the hidden layer was found to be a quasi-periodic
oscillator composed of two neurons similar to the one discribed in
[11]. By using symmetric output weights a typical walking gate was
obtained, which enabled an efficient forward movement.

5 Adding the ”MRC” controller for Obstacle
Avoidance

For the second task, obstacle avoidance, is endowed with an addi-
tional motor, turning an infrared sensor left and right in an oscilla-
tory motion. Furthermore, one has to insert obstacles into the sim-
ulated environment. The difficulty with environments for obstacle

2 see also: http://opende.sourceforge.net/

avoidance is to define a suitable fitness function. The robot should
move as far as it can, but to avoid obstacles may start to walk in cir-
cles. This should of course be prevented. The simplest way to define
the fitness is to take the Euclidean distance from the start to the end
point of the robots trajectory, and to let it run in an environment with
walls. We choose an environment like a room with 4 walls, where one
wall is randomly left out for each run. In this environment the robot
has to avoid the walls and to turn inside of the virtual room until
it finds the exit to escape. To maximize the fitness the robot should
then continue walking a straight line to get as far as possible from
the starting point. Evolving a neuro-controller leads to the following
solution: The robot prevents hitting the walls by turnig in only one di-
rection, while observing the obstacle. This is done by inhibitting the
motor neuron of one of the forward pushing legs when an obstacle
is detected. Further experiments show that the robot sometimes gets
stuck in narrow corners. The simple neuro controller is not able to
turn without forward movement, and it is not able to wak backwards.

In earlier works of M.Hülse and F.Pasemann [8] a neuro-controller
called ”MRC” is evolved, which enables a wheeled Khepera robot to
avoid obstacles in an elegant way. So the idea is to fuse the neuro-
module ”MRC” with our resulting controller. To enable even back-
wards walking we have to construct a network which in principle
performs a kind of multiplication between two signals, the quasiperi-
odic oscillator and the infrared distance-sensor signal (as in [9]).
The output then is directly connected with the forward pushing back
legs. Tuning the resulting networks weights with the Evolutionary
Program results in a quite well performing neuro controller (Fig. 3)
which enables the simulated robot to avoiding obstacles in an elegant
and efficient way. Testing this controller on the hardware platform
Hodgkin leads to an astonishing similar behavior, where differences
between simulation and real hadware are hardly to be seen.

In a last experiment we compare the performance of the neural net-
work to the one of a simple 2 layered subsumption architecture. The
lower level imlements a forward movement, while the upper level in-
hibits the lower level when detecting an obstacle and turns the robot
away from it as long as it ”sees” the obstacle. Both controllers should
make the robot walk through a typical robocup rescue scenario with
cylindric obstacles. The neural controller just reaches from the start
to the end, while the subsumption controller often gets stuck in front
of the cylindric obstacles, turning the robot to the left, then to the
right, then to the left again etc.

6 Conclusions

With a physics simulation environment and our Evolution Program
we evolve neuro modules for locomotion and for obstacle avoidance
of a new walking platform. The process should be started with sim-
ple forward movements. The resulting network will be analyzed and
decided which weights should be fixed. After increasing the task
difficulty the evolution is continued by changing the neural connec-
tion weights and by evaluating the new individuals. We obtain small
and robust networks, which may be understood in their functionality
as well as in their dynamical properties. Understanding such neuro
modules, we are able to couple these modules together to improve
the robots performance. This method is demonstrated on the four-
legged robot Hodgkin successfully performing obstacle avoidance in
various environments. Future research will concentrate on evolving
neuro-controllers with modulatory learning capabilities [5] to enable
the robot to adapt to its environment.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

26



Figure 3. Hodgkins ”artificial brain” consisting of 19 neurons. The upper left shows a neural oscillator needed for simple walking, the upper right, the ”MRC”-
module evolved by Frank Pasemann and Martin Hülse, is needed for obstacle avoidance and the lower right corner shows the multiplying network which enables
walking in different directions.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

27



7 Acknowledgements
Special thanks to Ralph Breithaupt, Poramate Manoonong and Frank
Pasemann, who helped with fruitful discussions.

REFERENCES
[1] R.D. Beer, H.J. Chiel, and J.C. Gallagher, ‘Evolution and analysis of

model cpgs for walking ii. general principles and individual variability’,
J. Computational Neuroscience, 7(2), 119–147, (1999).

[2] A. Calvitti and R.D. Beer, ‘Analysis of a distributed model of leg coor-
dination. i. individual coordination mechanisms’, Biological Cybernet-
ics, 82, 197–206, (2000).

[3] H. Cruse, J. Dean, T. Kindermann, J. Schmitz, and M. Schumm,
‘Walknet - a decentralized architecture for the control of walking be-
havior based on insect studies’, in Hybrid Information Processing in
Adaptive Autonomous Vehicles, ed., G. Palm, Springer, (1999).

[4] D. Filliat, ‘Incremental evolution of neural controllers for navigation in
a 6legged robot’, in Fourth International Symposium on Arti?cial Life
and Robotics, (1999).

[5] J. Fischer, A Modulatory Learning Rule For Neural Learning And Met-
alearning in Real World Robots with Many Degees of Freedom, Ph.D.
dissertation, Westfälische Wilhelms Universitt Münster, 2003.

[6] J. Fischer, F. Pasemann, and P. Manoonpong, ‘Neuro-controllers for
walking machines - an evolutionary approach to robust behavior’, in
7th Int. Conf. on Climbing and Walking Robots, (2004).

[7] Frédéric Gruau, ‘Automatic definition of modular neural networks’,
Adapt. Behav., 3(2), 151–183, (1994).

[8] M. Hülse, ‘Dynamical neural schmitt trigger for robot control’, in
ICANN 2002, ed., J.R. Dorronsoro, LNCS2415, pp. 783–788, (2002).

[9] P. Manoonpong, F. Pasemann, and J. Fischer, ‘Modular neural control
for a reactive behavior of walking machines’, in Proceedings of the
CIRA2005, Helsinki University of Technology, Finland, volume ISBN:
0-7803-9355-4, (2005).

[10] G.B. Parker and Z. Li, ‘Evolving neural networks for hexapod leg con-
trollers’, in Proceedings of the 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2003), pp. 1376–1381,
(2003).

[11] F. Pasemann, M. Hild, and K. Zahedi, ‘So(2)-networks as neural oscil-
lators’, in Biological and Artificial computation: Methodologies, Neu-
ral Modeling and Bioengineereng Applications, IWANN 7’th, Lecture
Notes In Computer Science, (2003).

[12] J. Schmitz, J. Dean, Th. Kindermann, M. Schumm, and H. Cruse, ‘A bi-
ologically inspired controller for hexapod walking: simple solutions by
exploiting physical properties’, Biological Bulletin, 200(2), 195–200,
(April 2001).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

28



Offline and active gradient-based learning strategies in a
pushing scenario

Sergio Roa and Geert-Jan Kruijff
German Research Center for Artificial Intelligence / DFKI GmbH

{sergio.roa,gj}@dfki.de1

Abstract.

When operating in the real world, a robot needs to accurately pre-

dict the consequences of its own actions. This is important to guide

its own behavior, and in adapting it based on feedback from the

environment. The paper focuses on a specific problem in this con-

text, namely predicting affordances of simple geometrical objects

called polyflaps. A machine learning approach is presented for ac-

quiring models of object movement, resulting from a robot perform-

ing pushing actions on a polyflap. Long Short-Term Memory ma-

chines (LSTMs) are used to deal with the inherent spatiotemporal

nature of this problem. An LSTM is a gradient-based model of a Re-

current Neural Network, and can successively predict a sequence of

feature vectors. The paper discusses offline experiments to test the

ability of LSTMs to solve the prediction problem considered here.

Cross-validation methods are applied as a measure of convergence

performance. An active learning method based on Intelligent Adap-

tive Curiosity is also applied for improving the learning performance

of learners trained offline, generating a combination of learners spe-

cialized in different sensorimotor spaces after the knowledge trans-

fer.

1 Introduction

Robots need to learn in continuously changing environments. One

way to learn from the world is by interacting with objects present in

it. This work is inspired by the fact that humans and animals in gen-

eral are able to properly adapt to a dynamic environment. Theories

of cognitive development like the theory of affordances [5] attempt

to explain how creatures are able to acquire sensorimotor skills when

they are faced with the different features found in the environment.

For instance, surfaces afford posture, locomotion, collision, manip-

ulation, and in general behaviour [5]. Particular objects can afford

sliding, flipping, rolling behaviour. A consequence of this is that the

creature should then properly predict the consequences of actions on

a surface given its own body configuration. We consider here a spe-

cial case of affordances learning in robots, namely that of predicting

consequences of pushing simple geometrical objects called polyflaps.

Polyflaps have been proposed to design simple learning scenarios. A

polyflap is a polygon (concave or convex) cut out of a flat sheet of

some material (e.g. cardboard) and folded once (anywhere) to pro-

duce a 3-D object [17], cf. Fig. 1. By combining different objects

and performing different actions, we can steadily increase the com-

plexity of the learning environment.

1 The research reported of in this paper is supported by EU FP7 IP ”CogX”
(ICT-215181)

Figure 1. Polyflaps,
http://www.cs.bham.ac.uk/∼axs/polyflaps/. Used here are

polyflaps of the shape (bottom-right corner)

In this paper we discuss a learning scenario where a simulated

robotic arm interacts with a polyflap. In the implementation we use

the NVidia R© PhysXTM library that allows us to perform realistic

physical simulations and to obtain 3-dimensional feature vectors, so

that we can easily re-adapt our algorithms to real scenarios. Although

providing an idealized scenario, these experiments are necessary to

establish a base line from which we can start facing noisy and in-

complete features, where learning machines should be able to gener-

alize and present outcomes in the presence of uncertainty. The learn-

ing machines we use are able to process spatio-temporal features.

Specifically, we use the Long Short-Term Memory (LSTM) [7, 6]

model of an Artificial Neural Network. The main objective is that

the robot arm pushes the object and predicts a sequence of polyflap

poses encoded as rigid body transformations during a certain time

interval following the pushing action. To reduce the space- and time

complexity of the problem, we select a discrete set of possible ac-

tions and starting positions for the arm to start the pushing move-

ment. This reduction of dimensionality affords us also to evaluate

and analyse more easily and carefully the learning algorithms and

its corresponding results. In general, sliding and flipping affordances

are obtained by applying pushing actions. The experiments show that

the machines are able to model a sort of regression function that fits

the data very accurate. This fact is also crucial from the point of view

of dimensionality reduction, since the use of a learning machine to-

gether with its generalization abilities can highly reduce the need

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

29



of storage space. Moreover, the inherent recurrent topology of these

networks affords the reduction of space needed for storing spatio-

temporal information.

The characteristics of these learning machines are appropriate for

autonomous development of robots [10, 14]. Robots should be able

to autonomously acquire sensorimotor skills by interaction with the

environment. Thus, machines that are able to learn in an online and

active manner need to be used. Neural Networks in general are useful

for these tasks, since their weights can be updated efficiently by us-

ing one forward and one backward pass when we use gradient-based

methods. However, one has to be careful with the problem of overfit-

ting data (bias-variance tradeoff). Therefore, a sufficiently big set of

samples and iterations are needed in order to generalize sufficiently

well a dataset.

We tested the topology of the neural network in order to find a

good compromise between computational complexity and general-

ization ability. For that purpose, we extracted n-fold crossvalidation

sets and analyzed the average sum of squares error for all training

epochs. The problem that we tackle can be regarded as a time series

prediction problem approached by regression techniques. Therefore,

the sum of squares error is a good performance estimation. The ex-

periments show that the machines are able to accurately predict a

feature vector, given a history of precedent feature vectors that to-

gether form a sequence. After offline training, we applied an active

learning technique based on the Intelligent Adaptive Curiosity algo-

rithm [10, 14], by including an additional set of actions in order to

test the autonomous generation of different regions in the sensorimo-

tor space that allows an active selection of samples via maximization

of a measure of learning progress and multiple learners specialized

in each region. We also show that the generalization is improved by

the set of machines (which are only “biased” for their corresponding

regions).

This paper is organized as follows. In the next section, we present

a current state of the art related to affordances learning in robots and

recurrent neural networks. In section 3, we describe the learning sce-

nario and the features we used for training LSTMs. In section 4 we

present the offline learning mechanism and architecture employed.

In section 5 we show and explain experimental results for offline ex-

periments with LSTMs. In section 6 we explain the active learning

mechanism and results and in section 8 we present some concluding

remarks and planned work.

2 Related Work

Affordances learning has been introduced in the field of robotics in

recent years. The reason is that aiming to autonomous behaviour

in robots requires an inspiration from biological cognitive systems,

which are very successful on acquiring sensorimotor skills by their

own means. As a cognitive science theory, the field was introduced

by the perceptual psychologist J.J. Gibson [5]. An affordance in this

sense is a resource or support that the environment offers an agent

for action, and that the agent can directly perceive and employ. From

the robotic perspective, this concept implies that the robots should be

able to predict consequences of actions given certain object features

and robotic embodiment.

In the field of robotics, a compilation of works related to

affordance-based robot control can be found in [15]. A similar ap-

proach to the one presented in this work is described in [12]. In that

work, labels of object/action pairs and 11 features encoding the ac-

tion performed and the object behaviour are used to train Self Orga-

nizing Maps. In this way, they cluster this space and map the features

to the target function represented by such labels. Pushing actions

were performed on different objects in a real environment. Other ap-

proaches have used also similar features and learning methods and

have studied different kinds of affordances [2].

Perception of affordances has also been addressed with reinforce-

ment learning techniques. In [11], the robot performs different learn-

ing stages starting from recognizing affordances and finally accom-

plishing some task given the affordances that the robot has already

acquired in earlier stages. In that work, liftable vs. non-liftable ob-

jects are recognized and Markov Decision Processes are used for the

goal-based task. In [10, 14] the robot autonomously enters differ-

ent stages of development by interacting with objects or performing

some action, which is selected according to a measure of “interest-

ingness”. Thus, robots are intrinsically motivated to perform actions

that offer an opportunity to learn according to an estimation of learn-

ing progress calculated from prediction error histories.

However, we can consider that these aproaches use a kind of short-

term memory or mapping approach that does not take into account

the spatio-temporal processing of data when an action is performed

in a given time interval. Moreover, in some approaches there is an

explicit labelling of the recognized affordances or the robot has no

means to evaluate the accuracy of its predictions. In order to evaluate

the abilities of learning machines in processing a series of features

like rigid body transformations that gives us a more accurate assess-

ment of the object poses and behaviour, we are using recurrent neural

networks that are known to process sequences and obtain proper gen-

eralizations by infering regression functions.

A simulated scenario using also polyflaps is described in [9]. The

authors formalise the learning problem in a probabilistic framework.

Explicit 3D rigid body transformations are predicted by that models

and they are tested against novel objects similar in shape to polyflaps.

Long Short-Term Memory machines have been used for problems

like time-series prediction, sequences classification, phoneme classi-

fication, reinforcement learning, among others [7, 6, 1]. They are ap-

propriate to handle long-term dependencies in data sequences. There-

fore, they seem to have a high potential to be used in learning tasks

where compositionality and conditional dependencies of events or

states is encountered through a relatively broad time period.

The work described in this paper is a follow-up of the one pre-

sented in [13].

3 Learning Scenario

Figure 2. Learning scenario with a polyflap

The learning scenario is shown in Fig. 2. The simulated arm cor-

responds to a Neuronics R© Katana 6MTM arm with a ball as a simple

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

30



finger. In order to simulate a pushing action we apply a linear trajec-

tory over a specified time period until it reaches the desired pose. The

arm has 6 joints, including the last joint for the finger which is static.

The representation of object poses are in Euler angles with respect to

a reference frame which is the origin in the scene (6-D pose).

The features corresponding to the arm are a starting 6-D pose vec-

tor for the end-effector e0, and a real value denoting a direction angle

Θ ranging from 60 to 120 degrees, parallel to the ground plane in the

direction to the center of the standing polyflap side. Together, these

features form the motor command feature vector denoted as m. The

values are all normalized to obtain vectors with mean 0 and standard

deviation 1.0. A 6-D pose vector corresponding to the polyflap pose

is denoted as pt at time t. The pose p0 is fixed for all experiments.

Then, the concatenation f0 = [m e0 p0] represents the feature

vector to be fed initially to the neural network. The subsequent fea-

ture vectors fed to the machine have the form ft = [0 et pt], where

the size of 0 is the size of m. This representation affords the learning

machine to attain a better convergence.

During the execution of the arm path, we obtain a series of poses

〈pt, et〉 to construct a feature vector ft. We extract then n polyflap

and effector poses and finally we build a sequence set S = {fn
t=1}.

So, a particular sequence set (an instance) is used in each iteration of

the experiment to be fed to the LSTM in n + 1 steps. For the time

step t, a training tuple 〈ft, tt〉 is used for the neural network learn-

ing procedure, where the feature vector ft represents the input vector

and tt = pt+1 the target (predicted) vector encoding the predicted

polyflap pose.

This representation then encodes the rigid body transformations

of polyflap and effector through these n steps and also encodes the

given robot control command that performs the pushing movement.

In order to discretize and reduce the dimensionality of the task, we

only used a discrete number of different starting positions for the arm

to start the pushing movement.

4 Offline Learning method

The learning process used for training LSTMs with the features de-

scribed in section 3 is described here. As mentioned in the previous

section, a dataset D containing a certain quantity of sequences Si is

obtained and we perform offline experiments with these data.

A LSTM machine is usually composed of an input layer, a hidden

layer and an output layer. In general, recurrent neural networks can

have recurrent connections for all their neurons. In particular, in this

work we only use recurrent connections for the hidden layers. We

also made preliminary experiments with networks with no recurrent

connections and we found less performance. The LSTM [7, 6, 1] ar-

chitecture was developed in order to solve some learning issues in

recurrent neural networks related to long-term dependencies learn-

ing. These problems sum up to the problem that errors propagated

back in time tend to either vanish or blow up. This is known as the

problem of vanishing gradients.

LSTM’s solution to this problem is to enforce constant error flow

in a number of specialized units, called Constant Error Carrousels

(CECs), corresponding to those CECs having linear activation func-

tions not decaying over time. CECs avoid to transmit useless infor-

mation from the time-series by adding other input gates that regulate

the access to the units. Thus, they learn to open and close access

to the CECs at appropriate moments. Likewise, the access from the

CECs to output units is controlled by multiplicative output gates and

they learn in a similar way how to open or close the access to the

output side. Additionally, forget gates [3] learn to reset the activation

of the CECs when the information stored in them is no longer use-

ful, i.e., when previous inputs need to be forgotten. The combination

of a CEC with its associated input, output and forget gate is called

a memory cell, as depicted in Fig. 3. Other additions are peephole

weights [4], which improve the LSTM’s ability to learn tasks that re-

quire precise timing and counting of internal states, and bidirectional

connections [16].

Output gate

Input gate

Forget gate

Net input

Net output

CEC

h

g
1.0

Figure 3. LSTM memory block with one cell. The internal state of the cell
is maintained with a recurrent connection of fixed weight 1.0. The three

gates collect activations from inside and outside the block, and control the
cell via multiplicative units (small circles). The input and output gates scale
the input and output of the cell while the forget gate scales the internal state.

The cell input and output activation functions (g and h) are applied at the
indicated places [6].

In this work, we used 10 memory blocks in the hidden layer, which

was found to be a good compromise between computational com-

plexity and convergence.

When some input vector is fed to the network, the forward pass is

calculated as follows. Let us denote an output neuron (unit) activation

yo, an input gate activation yin, and output gate activation yout and a

forget gate activation yf . Then, for the time step t each of them are

calculated in the following standard way:

y
i(t) = fi(

X

j

wijy
j(t − 1)), (1)

where wij is the weight of the connection from unit j to unit i, and

f the activation function. In this paper, we only consider one CEC

activation (one cell) for each memory block. The CEC activation sc

for the memory cell c is computed as follows:

sc(t) = y
fc(t)sc(t − 1) + y

inc(t)g(
X

j

wcjy
j(t − 1)), (2)

where g is the cell input activation function. The memory cell output

is then calculated by

y
sc(t) = y

outc(t)h(sc(t)), (3)

where h is the cell output activation function. The backward pass is a

steepest (gradient) descent method which updates the weights of the

different types of units. Consider a network input aj(t) to some unit

j at time t. In general, the gradient is defined as:

δj(t) =
δE

δaj(t)
, (4)

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

31



where E is the objective (error) function to be minimized and used

for training. For a detailed explanation of the backward pass equa-

tions for each unit type cf. [6]. Since we are dealing with a regres-

sion problem, we consider the sum of squares error as a performance

measure. The error function is defined as:

Et =
1

2K

X

i

(yi − y
′
i)

2
, (5)

where K is a normalization factor which depends on the size of each

sequence ni and the total number of sequences in the dataset k. yi is

the output unit activation and y′
i is the expected value. The learning

process is described in the Algorithm 1.

Data: A dataset D1 containing k sequences of variable size ni

for training. A dataset D2 containing z sequences of size

nj for testing.

Result: An LSTM machine after error minimization.

Nr. of epochs ep = 0.

repeat

for i=1 to k do

for j=1 to ni do
Input: Present training tuple 〈fij , tij〉 (jth forward

pass step).

end

Calculate error ei associated to current training

sequence Si.

Backward pass.

end

Evaluate error Et with the test set D2.

Epoch ep = ep + 1.

until No new network found with lowest error after 20 epochs ;

Algorithm 1: Offline learning process

For the purpose of calculating the number of training sequences

that are necessary so that convergence improves, we generated n-

fold cross-validation sets. We split a dataset D into n disjoint sets of

equal size that are used for testing. We used the remaining data for

training n different networks.

5 Experimental results for Offline Learning

In order to test the convergence of LSTMs we used 10-fold cross-

validation sets for three different dataset sizes, namely 100, 200 and

500. That allowed us to estimate the approximate number of samples

that are needed to learn with high precision the prediction task.

In Fig. 4 a comparison of the average sum of squares error (SSE)

and SSE standard deviation is shown. In this case, the SSE is aver-

aged among all the cross-validation sets. The picture shows that the

SSE is considerably reduced when more samples are used, as ex-

pected, and likewise the standard deviation of the SSEs.

6 Active Learning

The active learning procedure is based on the work of Oudeyer et

al. [10] about Intrinsic Motivation Systems. The general idea of

the Intelligent Adaptive Curiosity (IAC) algorithm is that a meta-

learning system samples a set of actions and selects one that maxi-

mizes the learning progress, which is a measure based on the differ-

ence between smoothed current and previous mean error quantities.

The learning progress Lr is associated to a region Rr in the senso-

rimotor space. Starting with one region, successive regions are ob-

tained by splitting the sensorimotor space depending on a measure

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

100
200

500

Nr. of samples

Comparison of SSEs given nr. of samples

SSE for CV training sets
SSE for CV testing sets

Figure 4. SSEs are reduced when increasing the dataset size.

of variance in the dataset Dr (exemplars used for Region Rr). This

division is performed after |Dr| achieves a certain threshold κ. A

dataset Dr for a Region Rr is split in two datasets Dr+1,Dr+2 (for

regions Rr+1,Rr+2). Let us denote

Dr = {Si}

the set of instances in region Rr . Then the split of Dr defined by the

index c with value vc is performed when the following criterion (Γ)

is met:

• all the instances Si of Dr+1 have the cth component of their motor

command vector mi smaller than vc.

• all the instances Si of Dr+2 have the cth component of their motor

command vector mi greater than vc.

• the quantity |Dr+1| · σ({[eij pij ]
ni

j=1 ∈ Dr+1}) + |Dr+2| ·
σ({[eij pij ]

ni

j=1 ∈ Dr+2}) is minimal, where

σ(S) =

P

v∈S ‖v −
P

v∈S v

|S|
‖2

|S|

where S is a set of vectors.

Each region stores all cutting dimension and values that were used in

its generation as well as in the generation of its parent regions. For

the region Rr a learning machine Mr is stored, and this machine is

inherited by the child regions. The learning process is described in

the Algorithm 2.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

32



Data: An initial region R0 which encompasses the whole

sensorimotor space.

Result: A set of regions {Rr} with corresponding LSTM

machines {Mr}.

for i=1 to I do
Choose a motor command action

mr,i = arg max
m∈{Rr}{Lr,i} among all current regions

{Rr} by using a near to greedy policy with probability 0.3.

if κ then
Split region Rr into Rr+1 and Rr+2 according to Γ.

end

Calculate error er,i associated to current training sequence

Sr,i.

Update the machine Mr with a forward and backward pass.

Calculate smoothed mean error εr,i+1 and εr,i+1−τ with a

window parameter τ and a smoothing parameter θ.

Calculate the decrease in the mean error rate

∆r,i+1 = εr,i+1 − εr,i+1−τ .

Calculate the learning progress Lr,i+1 = −∆r,i+1.

end

Algorithm 2: Active learning process

7 Experimental Results for Active Learning

In order to test the active learning mechanism, the main idea is to

train offline a LSTM with a subset of all possible starting positions

producing a partial set of actions and thus a dataset D0 ⊂ P0, where

P0 is the sensorimotor manifold encompassing D0. Then, we use this

machine in the active learning loop allowing additional actions, so

that at the end we generate a dataset D1 ⊂ P1, where P0 ⊂ P1 . The

hypothesis is that the algorithm will start producing more frequently

actions corresponding to the sensorimotor regions associated to the

new actions.

Thus, we first trained offline a LSTM with a subset of possible

starting positions for the arm movement and a number of sequences

equal to 500. This generates the dataset D0. When initializing the

active learning procedure, we allowed all possible starting positions

for the arm movement. Then, we initialize the region R0 with the al-

ready trained machine M0 that introduces better generalization per-

formance according to the cross-validation sets. We apply a maxi-

mum number I = 300 of iterations, after which a new dataset D1

is generated. Then, we merge the datasets into a set D = D0 ∪ D1.

We use the set D to test the errors of the machine trained offline and

the ensemble of machines trained via active learning. The results are

shown in Table 1.

Table 1. An ensemble trained via IAC against an offline trained machine.

Machine Avg SSE

Offline 0.4251
Active 0.211991

The unique observation here is that the generalization performance

is improved by using the new active learner, which is a expected re-

sult. In order to check the hypothesis presented above, we analysed

the learning progress of the ensemble of machines created after split-

ting the sensorimotor space in different regions.

As expected, the algorithm starts to select very frequently actions

that are new or “interesting”. In Fig. 5, we can observe the frequency

of actions generated from each set of starting positions for a win-

dow of 20 iterations. For instance, from index ∼150 to ∼250 the

new set of actions are more frequent. This result also confirms the

generation of different stages of development that the IAC algorithm

produces [10]. We make the same observation for a specific region

(Fig. 6). In Fig. 7 the curves of learning progress and error for the

corresponding region are shown. We can observe that the learning

progress curve rises and the error drops.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

V
al

u
es

Iterations

 Frequency of actions (window size: 20)

starting positions 1 - 9
starting positions 10 - 18

Figure 5. Frequency of actions in the experiment.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

V
al

u
es

Iterations

Region 38

starting positions 1 - 9
starting positions 10 - 18
current region not active

Figure 6. Frequency of actions for a specific region (window size: 20).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100  120  140  160  180  200  220  240  260  280  300

V
al

u
es

Iterations

Region 38

Learning progress history
Errors history

Figure 7. Learning progress increase for a certain region.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

33



In Figures 8,9 the prediction ability of a learning machine over a

sequence is illustrated.

Figure 8. Prediction of the flipping affordance. The blue polyflap is the
first predicted polyflap in the current sequence and the red one the last

predicted one.

Figure 9. Prediction of the sliding affordance.

8 Conclusions and future work

The experiments shown in this paper demonstrate the ability of re-

current neural networks, in particular Long Short-Term Memory ma-

chines to approximate a regression function encoding the trajectory

of simple geometrical objects when pushing actions are performed.

Therefore, these machines are useful for predicting the affordances of

pushing actions. We used 3-dimensional features and realistic simu-

lations that we can then apply to real environments. Sequences of fin-

ger effector and polyflap poses were used to feed the LSTMs, show-

ing the capacity of LSTM for prediction in relatively large time pe-

riods. The offline experiments showed great accuracy in prediction.

The use of an active learning mechanism where machines are special-

ized in different parts of the sensorimotor space was also tested. The

selection of actions is performed via a measure of learning progress

that improves generalization.

In this work, the motivation to select an action via active learn-

ing is mainly based on the curiosity-driven mechanism introduced

by the IAC algorithm. This mechanism forces the robot to select ac-

tions that maximize a learning progress measure. This encourages

the reduction of error for sensorimotor regions that are still not accu-

rately learned. The effectivity of the IAC-based strategy for assessing

learning progress in sensorimotor regions with spatio-temporal fea-

tures is confirmed. Moreover, machines that take into account spatio-

temporal information fit well into the active learning loop. However,

the gradient-based method for updating the networks still makes the

process slow, so that many iterations are needed to observe high im-

provements. It is possible to add additional drives or measures for

selecting actions in order to have different strategies for accelerating

the learning progress. Additionally, alternative algorithms for LSTM

training may also be considered.

The CrySSMEx[8] algorithm has been used to analyse recurrent

networks as dynamical systems by using a conditional Entropy based

method that extracts a probabilistic automaton associated to a ma-

chine. This method might be useful for active learning, because it

represents uncertainty and predictability during the processing of

spatio-temporal features.

REFERENCES

[1] Bram Bakker, ‘Reinforcement learning with long short-term memory’,
in Advances in Neural Information Processing Systems 14, pp. 1475–
1482. MIT Press, (2002).

[2] Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale, Sajit Rao, and Giulio
Sandini, ‘Learning about objects through action - initial steps to-
wards artificial cognition’, in Proceedings of the 2003 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 3140–3145,
(2003).

[3] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins, ‘Learning to
forget: Continual prediction with lstm’, Neural Computation, 12, 2451–
2471, (1999).

[4] Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber, ‘Learn-
ing precise timing with lstm recurrent networks’, J. Mach. Learn. Res.,
3, 115–143, (2003).

[5] J. J. Gibson, ‘The theory of affordances’, in Perceiving, Acting,

and Knowing: Toward an Ecological Psychology, eds., R. Shaw and
J. Bransford, 67–82, Lawrence Erlbaum, (1977).

[6] Alex Graves, Supervised Sequence Labelling with Recurrent Neural

Networks, Ph.D. dissertation, Technische Universität München, July
2008.

[7] Sepp Hochreiter and Jurgen Schmidhuber, ‘Long short-term memory’,
Neural Computation, 1735–1780, (1997).

[8] H. Jacobsson, ‘The crystallizing substochastic sequential machine ex-
tractor - CrySSMEx’, Neural Computation, 18(9), 2211–2255, (2006).

[9] M. Kopicki, J. Wyatt, and R. Stolkin, ‘Prediction learning in robotic
pushing manipulation’, in Proceedings of the 14th IEEE International

Conference on Advanced Robotics (ICAR 2009), Munich, Germany,
(June 2009).

[10] P-Y. Oudeyer, F. Kaplan, and V. V. Hafner, ‘Intrinsic motivation sys-
tems for autonomous mental development’, IEEE Transactions on Evo-

lutionary Computation, 11(1), (2007).
[11] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner, ‘Learning to

perceive affordances in a framework of developmental embodied cog-
nition’, in Development and Learning, 2007. ICDL 2007. IEEE 6th In-

ternational Conference on, pp. 110–115, (July 2007).
[12] B. Ridge, D. Skočaj, and A. Leonardis, ‘A system for learning basic ob-

ject affordances using a self-organizing map’, in International Confer-

ence on Cognitive Systems CogSys 2008, Karlsruhe, Germany, (2008).
[13] Sergio Roa and Geert Jan Kruijff, ‘Long short-term memory for affor-

dances learning’, in Proceedings of the 9th International Conference

on Epigenetic Robotics, eds., Lola Caamero, Pierre-Yves Oudeyer, and
Christian Balkenius, number 146 in Lund University Cognitive Studies,
pp. 235–236. o.A., (11 2009).

[14] Sergio Roa, Geert Jan Kruijff, and Henrik Jacobsson, ‘Curiosity-driven
acquisition of sensorimotor concepts using memory-based active learn-
ing’, in Proceedings of the 2008 IEEE International Conference on

Robotics and Biomimetics, pp. 665–670, (2008).
[15] Towards Affordance-Based Robot Control - LNAI 4760, eds., Erich

Rome, Joachim Hertzberg, and Georg Dorffner, Lecture Notes in Com-
puter Science LNAI 4760, Springer Verlag, Berlin, Germany, 2008.

[16] M. Schuster and K.K. Paliwal, ‘Bidirectional recurrent neural net-
works’, Signal Processing, IEEE Transactions on, 45(11), 2673–2681,
(Nov 1997).

[17] Aaron Sloman, ‘Polyflaps as a domain for perceiving, acting and learn-
ing in a 3-D world’, in Position Papers for 2006 AAAI Fellows Sympo-

sium, Menlo Park, CA, (2006). AAAI.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

34



Fitted Policy Search:
Direct Policy Search using a

Batch Reinforcement Learning Approach

Martino Migliavacca, Alessio Pecorino, Matteo Pirotta, Marcello Restelli and Andrea Bonarini1

Abstract. In this paper we address the combination of batch

reinforcement-learning (BRL) techniques with direct policy search

(DPS) algorithms in the context of robot learning. Batch value-based

algorithms (such as fitted Q-iteration) have been proved to outper-

form online ones in many complex applications, but they share the

same difficulties in solving problems with continuous action spaces,

such as robotic ones. In these cases, actor-critic and DPS methods

are preferable, since the optimization process is limited to a fam-

ily of parameterized (usually smooth) policies. On the other hand,

these methods (e.g., policy gradient and evolutionary methods) are

generally very expensive, since finding the optimal parameterization

may require to evaluate the performance of several policies, which

in many real robotic applications is unfeasible or even dangerous. To

overcome such problems, we propose the fitted policy search (FPS)

approach, in which the expected return of any policy considered dur-

ing the optimization process is evaluated offline (without resorting

to the robot) by reusing the data collected in the initial exploration

phase. In this way, it is possible to take the advantages of both BRL

and DPS algorithms, thus achieving an effective learning approach

to solve robotic problems. A balancing task on a real two-wheeled

robotic pendulum is used to analyze the properties and evaluate the

effectiveness of the proposed approach.

1 INTRODUCTION

This paper describes and evaluates a new Reinforcement Learning

(RL) approach for robot learning that combines the advantages of

two RL techniques often used in real-world applications.

Reinforcement Learning [26] is a set of well-established tech-

niques which enable an agent to autonomously improve its behav-

ior through direct interaction with the environment without hav-

ing prior knowledge about the system dynamics and the task to be

solved. Originally, RL techniques and theories have been focused

on value-based temporal difference learning algorithms (of which

Q-learning [31] is the most popular) for discrete domains. While

acting in the environment, the agent updates a table which stores

the estimates about the expected long-term utility of executing any

action in each state. Since tabular approaches do not scale to high-

dimensional or continuous-domain problems [26] (like robotic ones),

many researchers have studied the use of function approximation to

represent the value function. Although some successful applications

1 Department of Electronics and Information, Politecnico
di Milano, piazza Leonardo da Vinci 32, I-20133, Mi-
lan, Italy, email: {bonarini,migliavacca,restelli}@elet.polimi.it,
{alessio.pecorino,matteo.pirotta}@mail.polimi.it

have been reported (e.g., [28]), a lot of critical issues are involved

like oscillations or even divergence of the approximator [2, 30].

These problems can be overcome by using batch reinforcement-

learning (BRL) algorithms [9, 19] that can exploit the numerous re-

gression methods from the machine learning literature while exhibit-

ing strong convergence properties [1, 16]. By processing off-line and

simultaneously all the information collected by the agent in the data

acquisition phase, BRL algorithms have been used to solve complex

continuous-state tasks [5, 24, 29] with usually much less data than on-

line RL algorithms need. While BRL approaches have been proved

very effective in continuous-state problems, the use of value-based

methods, such as the fitted Q-iteration (FQI) [5], is generally ill-

suited for learning in continuous-action domains, since the identifi-

cation of the optimal policy requires to perform a maximization over

the action space in order to find the action associated to the high-

est action value. Many approaches overcome this problem by sim-

ply considering a discretization of the action space, but this solution

cannot be adopted in many applications where finer and smoother

policies are needed. Furthermore, when the utility values associated

to different actions are very close, the error induced by the use of

function approximation often produces highly discontinuous policies

which in robotic applications may have several negative effects, such

as damages and high energy consumption.

On the other hand, direct policy search (DPS) methods [27, 18, 21]

are well-suited to address continuous-action problems. Instead of es-

timating the action-value function over the whole domain, such meth-

ods define an optimization process over the policy space, where the

goal is to find the policy which maximizes the expected return. Since

a search over the whole policy space would be prohibitive even for

simple problems, DPS methods generally restrict the search space by

considering a fixed parameterized class of policies. The possibility of

choosing the policy representation allows to supply the learning algo-

rithm with prior knowledge about the domain or imposing constraints

on the searched solution, thus strongly reducing (w.r.t. value-based

approaches) the number of parameters being estimated by the learn-

ing process. In particular, these methods are well-suited for partially-

observable domains since it is possible to design policies which de-

pend only on the observable data from the underlying MDP [18]. For

these reasons, DPS methods have been applied to a variety of robot

learning problems [22, 13, 23]. The main drawback of DPS methods

is that the performance evaluation of each different parameterization

requires to repeatedly execute the corresponding policies, which, in

robotic applications, can be a costly and time-consuming process,

with a high risk of damages for the robot and the environment.

To overcome such drawback, in this paper we propose the fitted

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

35



policy search (FPS) approach, in which the performance evaluation

step is run entirely offline using a modified version of the FQI algo-

rithm to compute the value function of the specified policy. For each

evaluation, FPS exploits the whole dataset of samples collected be-

fore the beginning of the learning process, without requiring to use

the robot for gathering additional data about each evaluated policy.

The rest of the paper is organized as follows. In the next section,

after introducing background material on MDPs, we present a brief

overview of BRL and DPS methods and discuss their relevance for

robotic applications. Section 3 introduces the fitted policy search ap-

proach. In Section 4, we evaluate its performance by making a com-

parative analysis with related learning algorithms on a real robotic

problem: the balancing of a mobile two-wheeled pendulum. In the

last section we draw conclusions and propose future research direc-

tions.

2 BACKGROUND

In this section we firstly introduce the basic RL notation and then

we discuss the BRL and DPS techniques at the top of which our

approach is built.

2.1 Markov Decision Problems

An RL problem can be defined as a Markov Decision Process (MDP)

defined by a tuple 〈S, A, P, R, γ〉, where S is the continuous state

space, A is the continuous action space, P (s′|s, a) is the transition

model that defines the transition density between state s and s′ un-

der action a, R(s, a) is a reward function that specifies the instan-

taneous reward when taking action a in state s, and γ ∈ [0, 1)
is a discount factor. The policy of an agent is characterized by a

density distribution π(a|s) that specifies the probability of taking

action a in state s. The utility of taking action a in state s and

following a policy π thereafter is formalized by the action-value

function Qπ(s, a) = E
ˆ
P∞

t=1
γt−1rt|s = s1, a = a1, π

˜

, where

rt = R(st, at). RL approaches aim at learning the policy that max-

imizes the action-value function in each state. The optimal action-

value function is the solution of the Bellman equation:

Q∗(s, a) = R(s, a) + γ

Z

S

P (s′|s, a) max
a′

Q∗(s′, a′)ds′.

The optimal policy is implicitly defined as the greedy policy π∗(·, ·),

which takes in each state the action with the highest utility.

Temporal Difference algorithms [26] allow the computation of

Q∗(s, a) directly interacting with the environment with a trial-and-

error process. Given the tuple 〈st, at, rt, st+1〉 (experience made by

the agent), at each step, action values may be estimated by online

algorithms, such as Q-learning [26], whose update rule is:

Q(st, at)← (1− α)Q(st, at) + α

„

rt + γ max
a′

Q(st+1, a
′)

«

,

where α ∈ [0, 1] is a learning rate.

2.2 Fitted Q-iteration

While in online learning the agent modifies step by step its control

policy according to the experience gathered from the environment,

the batch approach aims at determining the best control policy given

a set of experience samples D = {〈si, ai, ri, s
′
i〉}1≤i≤N previously

collected by the agent according to a given sampling strategy. It is

Algorithm 1 FQI algorithm

input: D = {〈si, ai, ri, s
′
i〉}1≤i≤N , a regression algorithm R,

number of iterations L
initialize: Q̂0(s, a) = 0, ∀s ∈ S, ∀a ∈ A
for k = 1 to L do

Tk =



h

(si, ai)→ ri + γ maxa′ Q̂k−1(s
′
i, a

′)
i

1≤i≤N

ff

Q̂k = R(Tk)
end for

return π̂∗
k(s) = arg maxa Q̂k(s, a)

assumed that samples in D are enough to avoid conditioning prob-

lems in the regression algorithms [16]. In particular, good results

have been achieved by fitted Q-iteration algorithms [5] derived from

the fitted value iteration approach [8]. The idea of FQI is to reformu-

late the RL problem as a sequence of supervised learning problems.

Given the dataset D, in the first iteration of the algorithm, for

each tuple 〈si, ai, ri, s
′
i〉, the corresponding training pair is set to

(si, ai) → ri, and the goal is to use a regression algorithm to

learn a function that approximates the expected immediate reward

Q1(s, a) = E[R(st, at)|st = s, at = a]. The second itera-

tion, based on the approximation Q̂1 of the Q1-function, extends

the optimization horizon one step further, by estimating function

Q̂2 through regression on the following training dataset: T2 =


h

(si, ai)→ ri + γ maxa′ Q̂1(s
′
i, a

′)
i

1≤i≤N

ff

. By proceeding in

the same way, at the ith iteration, using the approximation of the

Qi−1-function, we can compute an approximation of the optimal

action-value function at horizon i. The FQI algorithm is summarized

in Algorithm 1.

The batch approach allows to use any regression algorithm, and

not only parametric function approximators as happens for stochas-

tic approximation algorithms. Several studies have reported very

good results with a wide range of approximation techniques: kernel-

based regressors [19], tree-based regressors [5], neural networks [24],

CMAC [29], and advantage weighted regression [17]. All these

works show how batch mode RL algorithms allow to effectively ex-

ploit the information contained in the collected samples, so that, even

using small datasets, very good performances can be achieved. The

size of the dataset is a key factor for robotic applications, since col-

lecting a large amount of data with real robots may be expensive and

dangerous. As shown in [24, 3], simple control problems, such as

balancing a pole, can be solved from a dataset produced by taking

random actions for a few minutes.

2.3 Direct Policy Search

For a long time, value-function algorithms have been the main ap-

proach to solve RL problems, achieving good results in many do-

mains. Nonetheless, when more complex, real-world applications

are considered the limitations of such approach come into play. The

high sensibility to approximation errors, the computational cost in

continuous-action problems, the generation of highly non-smooth

policies, the impossibility of learning stochastic policies, and the dif-

ficulties in solving POMDPs are some of the reasons that make such

methods unsuitable for real-world robotic applications.

Direct policy search methods partially overcome these limitations

and for this reason have been largely adopted in continuous, high-

dimensional, robotic domains [18, 22, 13]. Instead of estimating an

action-value function which needs to be maximized over the action

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

36



space to get the learned policy, DPS methods search a good policy

within a restricted class of policies which are parameterized by some

policy parameters θ: Π̃ = {πθ : θ ∈ R
m}, where πθ represents the

policy π(s, a, θ). The learning process becomes an optimization pro-

cess in the policy parameter space, where finding the optimal policy

means to find the optimal parametrization θ∗, i.e., the parameteriza-

tion that maximizes the expected return

J(πθ) =

Z

S

µ0(s)V
πθ ds =

Z

S

µ0(s)

Z

A

πθ(a|s)Q
πθ (s, a)dads,

(1)

where µ0 is a given probability measure over S.

Many different approaches have been studied, especially in the

robot learning field, to optimize policy parameters. We can group all

these methods into two main classes: policy gradient optimization

and global optimization approaches. Policy gradient methods start

from a given point in the parameter space and modify the parameter

values following the steepest ascent on the expected return according

to the gradient update rule

θk+1 = θk + αk∇θJ |θ=θk
.

Several methods have been proposed for obtaining a good estima-

tion of the policy gradient∇θJ |θ=θk
[20]. Due to the characteristics

of the approach proposed in this paper (described in the next sec-

tion), we limit our attention to one of the simplest and most used

methods (in robotics) for gradient estimation: the finite-difference

methods. The idea is to estimate gradients from roll-outs, by chang-

ing the current policy parameterization by small increments ∆θi.

For each new parameterization the corresponding policy is evalu-

ated and variations of the expected return are estimated with ∆Ĵi =
J(θh + ∆θi) − J(θh). The policy gradient estimate gFD can be

computed by regression of ∆Θ = [∆θi] onto ∆Ĵ = [∆Ĵi]

gFD =
“

∆Θ
T
∆Θ

”−1

∆Θ
T
∆Ĵ.

The main advantages of finite-difference methods are the simplicity

of the implementation, the possibility of using deterministic policies,

and the possibility to learn without any knowledge about the model.

On the other hand, such methods have many drawbacks. Each pa-

rameter has a different sensitivity to perturbations, thus requiring to

define ad-hoc increments. Gradient estimate is negatively affect by

perturbations associated to very bad policies. In stochastic systems

the gradient estimate can be really noisy, requiring to perform many

roll-outs to reduce estimation variance. To overcome these issues

likelihood ratio methods have been proposed, the review of which

is out of the scope of this paper.

Another issue that potentially affects any gradient-based optimiza-

tion method is the risk of getting trapped in local maxima. To solve

such problems global optimization methods (e.g., evolutionary algo-

rithms [10, 11, 15] and cross-entropy methods [4]) have been of-

ten successfully used in DPS algorithms. The idea underlying these

methods is to start with the generation of a number of candidate solu-

tions from a prior distribution. On the basis of evaluations of these so-

lutions, new candidate solutions replace the previous ones by prefer-

ring regions of the search space where good parameterizations were

found, but giving a few chances also to less promising areas, with the

purpose of escaping from local maxima.

The main drawback of all DPS methods is the cost of evaluating

the expected return of the different parameterizations selected by the

search algorithm, which in many simulated tasks is not an issue, but

in real-world application can make the use of such methods unfeasi-

ble. Each evaluation requires to run several episodes from different

Algorithm 2 FPE algorithm for deterministic policies

input: D = {〈si, ai, ri, s
′
i〉}1≤i≤N , E = {si}1≤i≤NE

, a regres-

sion algorithm R, number of iterations L, a deterministic policy

π : S → A
initialize: Q̂π

0 (s, a) = 0, ∀s ∈ S,∀a ∈ A
for k = 1 to L do {Training}

Tk =



h

(si, ai)→ ri + γQ̂π

k−1(s
′
i, π(s′i))

i

1≤i≤N

ff

Q̂π

k = R(Tk)
end for

Ĵπ = 0
for all s ∈ E do {Evaluation}

Ĵπ ← Ĵπ + Q̂π

L(s, π(s))
end for

return Ĵπ

starting states, that can result in a very long process and, when a sim-

ulator is not available, it can use up the robot. In particular, it is well-

known that gradient-based methods need to perform small update

steps to the policy parameters in order to converge [25], thus requir-

ing several policy evaluations. For what regards global optimization

methods, besides the cost of performing several policy evaluations,

there is also the risk of finding parameterizations that correspond to

unstable or even dangerous policies, which can damage the robot and

the environment.

In order to overcome these issues, we propose to avoid the di-

rect evaluation of policies on robots by combining DPS methods

with BRL algorithms thus obtaining the fitted policy search approach

which will be introduced in the next section.

3 FITTED POLICY SEARCH

The main goal of the proposed approach is to perform the pol-

icy evaluation step without the need of executing several roll-outs for

each new parameterization produced by DPS methods. The fitted pol-

icy search (FPS) approach uses at each iteration a set D of samples

collected from the environment during an initial exploration phase as

it happens in the FQI algorithm (see Section 2.2). Differently from

FQI, FPS does not use these samples to compute the action-value

function for the optimal policy, but to estimate the expected return Ĵθ

of the policy corresponding to the current parametrization (see Equa-

tion 1). For this reason, we introduce fitted policy evaluation (FPE),

an on-policy version of the FQI algorithm, which, given a policy π
performs an offline estimation of the action-value function Qπ(s, a)
using a set of samples D = {〈si, ai, ri, s

′
i〉}1≤i≤N . The difference

with FQI is in the way the output values of the training set are built:

at the k-th iteration, instead of maximizing the Q-function over the

action space, for each sample i the training pair is defined as

(si, ai)→ ri + γ

Z

A

π(a|s′i)Q̂
π

k−1(s
′
i, a)da.

Given the approximated action-value function Q̂π , the expected re-

turn for policy π can be estimated using Equation 1.

Since the integral over the action space is hard to compute for

continuous, multi-dimensional action spaces2, here we focus on the

2 Other works have proposed approximated ways of estimating the value func-
tion even for stochastic policies without computing this integral. They de-
fine a regression problem based on samples collected by an exploration
policy and weighted according to importance sampling [17, 14]

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

37



evaluation of deterministic policies π : S → A, where the output

values of each training sample can be easily computed as follows

(si, ai)→ ri + γQ̂π

k−1(s
′
i, π(s′i)).

As a consequence, the expected return of policy π can be estimated

by

Ĵ(π) =

Z

S

µ0(s)Q̂
π(s, π(s))ds. (2)

Since Qπ is obtained through regression methods, it could be rep-

resented using general (non-parametric) function approximators. For

this reason, the integral in Equation 2 can be approximated using a

Monte Carlo estimate over a set of states E sampled from the dis-

tribution of the initial state µ0. The FPE algorithm for deterministic

policies is summarized in Algorithm 2.

4 EXPERIMENTS

In this section we describe experiments performed on a traditional

reinforcement-learning task: pole balancing. In particular, we apply

our FPS approach to balance TiltOne, a real, mobile, two-wheeled

robot designed and built in our robotics lab. The goal of the following

experiments is to evaluate the effectiveness of the proposed approach

in learning good policies exploiting only a very small set of data

collected from the robot.

4.1 TiltOne

TiltOne is a two-wheel balancing robot that can stand in vertical po-

sition actuating only its wheels. The robot is 90cm tall and weights

20kg with batteries with a maximum payload of about 50kg when

moving at speeds up to about 1.5m/s. The wheels are 50cm in di-

ameter and are actuated by two 150W DC motors with a 26 : 1 gear

reduction. A synchronous belt transmission adds a 4 : 1 reduction,

resulting in a total reduction of 104 : 1 and a maximum continu-

ous torque at the wheels of 18N/m. The robot is controlled by an

STM32 ARM Cortex-M3 microcontroller running at 72Mhz, that is

responsible of acquiring sensor outputs, controlling the motors, and

logging the robot status communicating via a serial connection with

an off-board computer.

The robot is equipped with sensors used to measure a set of vari-

ables that can describe the state of the system. The chosen variables

are the angle ω of the frame with respect to the vertical position, the

angular rate ω̇ and the speed of the robot on the horizontal plane ẋ.

To evaluate the angle of the robot with respect to the direction of the

gravity acceleration, an accelerometer and a rate gyroscope are used.

The accelerometer is used to sense the gravity acceleration along two

components, the first oriented from the wheel axis to the top of the

robot frame and the other in the perpendicular direction. In static con-

ditions, it is possible to evaluate the angle ω as

ω = sin(gx) (3)

where gx is the horizontal component of the gravity acceleration in

the frame coordinate system. In dynamic conditions, the accelera-

tion of the robot is superimposed to the horizontal component of the

gravity acceleration, making the measure too noisy for an accurate

estimate of the angle.

The rate gyroscope is used to measure the angular rate with re-

spect to the wheel axis. The sensor output is directly proportional to

the angular rate, and in order to obtain the angle of the robot the sig-

nal needs to be integrated. This operation, as there is always a small

Figure 1. TiltOne

offset in the signal, leads to drift problems, resulting in an increasing

error over time.

A Kalman filter is used to calculate a correct estimate of the an-

gle, that is not affected by accelerations and drift problems, with the

measurement gathered from the accelerometer and the gyroscope.

The speed of the robot is measured using two incremental optical

encoders mounted directly on the motors, with a resolution of 2000
tics per revolution of the rotor.

4.2 Data acquisition

The datasets used by all algorithms are built on the basis of real data

collected by the robot. The variable used are the angle of the robot

ω, its angular rate ω̇, and the robot speed ẋ. A loop running on the

microcontroller at 50Hz sends over a serial connection the instanta-

neous value of the three variables and the value of the control action

currently performed.

In order to acquire data covering all the domain of the measured

variables the acquisitions have been performed with the robot start-

ing from the vertical position and controlled by actions taken uni-

formly at random. The value of the control is updated at a frequency

of 10Hz, so each action is maintained for 5 cycles to better evalu-

ate the effect of a specific action on the robot behavior. When the

robot falls (the absolute value of angle ω exceeds 8 degrees) the cur-

rent acquisition is terminated and a new one is started. Depending on

the random actions performed, a single acquisition can last from a

fraction of second to about 2s.

Each dataset is composed by 1000 points (20s of acquired data)

gathered from different data, to better evaluate the dependence of the

performance observed from the train data used. From these complete

datasets smaller ones have been extracted, with 100 and 500 points

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

38



-800

-600

-400

-200

 0

 200

 400

 600

 800

Rate (deg/s) Angle (deg)

Pwm

-8 -6 -4 -2  0  2  4  6  8
-80 -60 -40 -20  0  20  40  60

Figure 2. This graph displays the policy learned by FQI (projected on the
(ω, ω̇) plane) evaluated on a training dataset with 1, 000 samples (red

crosses) and its approximation with the hyperbolic tangent function (black
lines).

(2s and 5s of data respectively), to evaluate how the computed policy

improves while increasing the dataset size.

4.3 Task Definition and FQI Parameters

To evaluate the performance of the proposed approach we have cho-

sen the balancing task, so that the goal of the robot is to reach and

keep the vertical position as soon as possible. To define such task we

have chosen the following reward function:

rt+1 = −|ωt+1|.

Several tests have been performed to set all the learning parameters

of the algorithms used in this experimental analysis. The time hori-

zon was set to 10 undiscounted (γ = 1) steps both for the FQI and

for policy evaluations. For function approximation we have used Ex-

tremely Randomized Trees [6], an algorithm for non-parametric re-

gression that has been successfully used within the FQI approach

in many reinforcement-learning applications [5]. Extremely random-

ized trees consist of an ensemble of regression trees that are built by

choosing, in each node, the best splitting point (according to a vari-

ance reduction criterion) among a set of ncut alternatives randomly

generated. The splitting process stops when the number of samples in

the node is smaller than the threshold nmin (whose value influences

the degree of generalization and depends from the stochasticity of

the system) and the node becomes a leaf. To each leaf is associated

as value the mean of the outputs of its samples. Given an input, the

corresponding output is computed as the arithmetic mean of the esti-

mates produced by each tree. Following the indications of previous

works [6] and the results of some tests, we used 50 trees generated

by considering at each split step 4 (as the number of inputs of the

Q-function) alternative cut directions. The minimum number of sam-

ples in the leaves was set to 10.

4.4 Policy Parameters

To choose the class of parameterized policies for this task, we ran

the FQI algorithm on a dataset with 1, 000 samples to have an idea

of the shape of the policy we were searching for. As expected, the

policy estimated by FQI is quite discontinuous, but it is quite easy to

see from Figure 2 that it can be well approximated by a hyperbolic

tangent function of the angle. The other inputs have minor effects

on the shape of the policy and seem to determine only slight trans-

lations. Starting from these observations we decided to consider the

following parametric representation for the policy:

πtanh(θ) = θ1 · tanh

„

ω

θ2

+
ω̇

θ3

«

+ θ4ẋ. (4)

It might be objected that, instead of performing a long optimization

process involving several policy evaluations, the parameters θ could

be directly estimated by regression over the policy learned by FQI.

Although, for certain problems, this approach may found effective

policies, in the general case it does not work, even when the policy

learned by FQI is actually the optimal one, since minimizing a dis-

tance in the policy space does not correspond to minimize the differ-

ence of their expected returns. In Section 4.6 we will experimentally

show a case in which the direct fitting of the policy parameters over

the FQI policy is clearly outperformed by the FPS approach.

4.5 DPS Methods and Learning Parameters

For the FPS approach we considered different DPS methods. Since

the policy evaluation step can be easily performed for deterministic

policies, we focus on DPS methods that search for such policies.

At first, we have tried the finite difference policy gradient method

described in Section 2.3. The algorithm is initialized with a random

parametrization θ
0. Each gradient estimation has been computed

using 10 parameter perturbations ∆θi ∈ [−50 : 50] × [−0.2 :
0.2] × [−10 : 10] × [−0.1 : 0.1], and different learning rates have

been considered for the parameter update. We observed that using

high learning rates (α > 0.1) the algorithm is not able to converge

to a good parameterization, often exploring regions of the parameter-

ization space associated to very unstable policies, where the gradient

estimation becomes highly unreliable. Such phenomenon vanishes

when very small learning rates are considered, but, as a result, a huge

number of policies need to be evaluated, thus determining an exces-

sive computational cost (even if it certainly requires less effort than

directly evaluating the policies on the robot). These observations are

confirmed by the results reported in [25] which compared the per-

formance of different policy gradient methods on a simulated cart-

pole problem. For the finite difference policy gradient approach, the

authors found a good trade-off between performance and learning

speed by setting the learning rate to 0.001, which results in more

than 10, 000 gradient estimations before getting a near-optimal per-

formance.

Since evaluating the performance of the finite-difference gradient

method would have required too much time to get significant results,

we decided to consider a simple greedy search method based on ran-

dom weight guessing (RWG) [7]. As in the finite-difference method,

at each iteration, new policy parameters are explored by consider-

ing K perturbations drawn uniformly from [−50 : 50] × [−0.2 :
0.2] × [−10 : 10] × [−0.1 : 0.1]. If the best candidate policy out-

performs the current solution, the latter is replaced and another itera-

tion starts, otherwise the algorithm stops returning the current policy.

In the following experiments, at each iteration, we have evaluated

K = 10 candidate policies.

Finally, we have considered evolutionary algorithms (EAs), a well-

known class of search and optimization strategies inspired by natural

evolution theory, that have been often used to perform DPS for RL

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

39



-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0  100  200  300  400  500  600  700  800  900  1000  1100
-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

A
v
e
ra

g
e
 R

e
w

a
rd

Samples

FQI
FPS-RWG

FPS-EA
PID

Figure 3. Comparison between FQI and two FPS variants (optimizing
parameters of πtanh) on the TiltOne balancing task. The graph shows the

average reward per step (computed on a 5s period) as a function of the
number of samples in the dataset. Curves are an average over 25 runs. The

horizontal dotted line corresponds to the optimal performance achieved by a
carefully tuned PID controller.

tasks. On the other hand, the RL community has often snubbed the

EA approach, starting from the assumption that a general optimiza-

tion technique cannot compete with learning algorithms specifically

designed to solve RL problems. In the following section, we will

show that using EAs, and in particular genetic algorithms (GAs) [12],

in the FPS approach allows to learn very good policies even with a

very small set of samples. In our experiments, a tuning of the param-

eters of the algorithm led to evolve a population of 10 individuals for

10 generations, with a replace proportion of 0.9, a crossover proba-

bility of 0.5, and a mutation probability of 0.1.

4.6 Experimental Results

To estimate the effectiveness of the proposed approach, we analyze

how the performances of two FPS algorithms (using RWG and EA

as DPS methods) in the TiltOne balancing task change with respect

to the size of the training dataset, and we compare them to the per-

formance of the FQI algorithm. For each size of the training dataset

(i.e., 100, 500, 1000 samples, representing 2s, 5s and 20s of data ac-

quisition), 5 independent acquisitions have been generated. After the

initial acquisition phase, where TiltOne is used to collect datasets of

transition samples, both FQI and the two FPS algorithms (which op-

timize over the parameters of the πtanh) carry out the whole learning

process offline, without requiring additional samples. At the end of

the learning process, the policies from the different algorithms are

tested on TiltOne. For each policy, 5 testing episodes are performed

and their results are averaged; each episode starts with the robot lean-

ing on a support which determines an inclination ω = 2o and stops

after 5s (250 cycles). If the robot falls (|ω| > 8o) before the end

of the run its reward is set to −10 for all the remaining cycles. The

results are compared in Figure 3, where the performance is evaluated

as the average reward per step. It can be observed that the FQI al-

gorithm is not able to find a suitable policy with small datasets, as

evidenced by the low average reward value. By increasing the length

of the dataset the average performance improves, but with 1000 sam-

ples it is still far from the results obtained by the reference PID con-

θ1 θ2 θ3 θ4 Average Reward

100

184.6 0.57 10.1 0.064 −3.28

344.5 1.16 87.4 −0.006 −0.40

671.6 1.45 29.1 0.313 −0.22

100.0 0.19 50.8 −0.016 −9.26

645.8 1.33 142.1 −0.021 −0.20

500

765.3 0.75 78.2 0.041 −0.34

390.4 1.88 37.9 0.094 −0.65

769.7 0.19 73.5 0.318 −2.54

730.9 1.44 137.8 −0.006 −0.18

765.4 1.93 95.8 0.011 −0.22

1000

787.1 0.58 49.4 −0.151 −1.21

626.1 0.75 35.7 0.079 −0.18

733.7 0.80 139.1 −0.073 −0.16

755.4 0.93 71.6 −0.029 −0.14

743.7 1.83 136.0 0.067 −0.23

Table 1. This table shows the parameters of πtanh identified by FPS-RWG
algorithm with different learning data and different dataset lengths, and the

average reward on 5 runs

θ1 θ2 θ3 θ4 Average Reward

100

637.0 1.82 105.4 0.037 −0.24

750.1 0.57 133.7 −0.083 −0.43

381.5 1.45 107.5 −0.074 −2.24

278.8 0.53 129.4 −0.107 −0.99

544.2 1.47 144.9 −0.237 −0.77

500

717.1 1.97 81.0 0.193 −0.29

763.2 0.53 47.8 −0.048 −1.31

781.0 0.36 41.7 −0.161 −1.73

710.0 1.66 78.2 −0.059 −0.20

637.8 1.01 93.3 0.140 −0.15

1000

750.3 1.32 69.6 0.034 −0.16

694.6 1.35 58.4 0.078 −0.17

604.0 1.09 137.5 −0.066 −0.18

633.5 0.14 22.5 −0.201 −1.86

727.8 0.52 68.2 0.092 −0.76

Table 2. This table shows the parameters of πtanh identified by FPS-EA
algorithm with different learning data and different dataset lengths, and the

average reward on 5 runs

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

40



-8 -6 -4 -2  0  2  4  6  8 -80
-60

-40
-20

 0
 20

 40
 60

-1000

-500

 0

 500

 1000

Pwm

Linear FPS-EA Policy
FQI Linear Approximation

Angle (deg)

Rate (deg/s)

Pwm

Figure 4. This graph displays the policy learned by FQI (projected on the
(ω, ω̇) plane) evaluated on a training dataset with 1, 000 samples (red

crosses), its approximation using a linear function (green lines), and the
linear function estimated using the FPS approach (blue lines).

troller. On the other hand, FPS algorithms are able to show very good

performance even with very small datasets, outperforming the results

obtained with the FQI approach. The EA variant especially can learn

good policies starting from as low as 100 samples (2s of data) while

the RWG variant, which is more prone to get stuck in local maxima,

needs more samples to avoid the identification of bad parameteri-

zations, while exploiting more samples both FPS variants perform

closely to the reference PID controller. Although the number of sam-

ples is the main evaluation factor, it is interesting to compare the

computational cost of the two FPS variants in terms of number of

policy evaluations: the EA algorithm needs to evaluate a fixed num-

ber of policies (100 policies given by 10 individuals evolved for 10
generations), while the required evaluations using the RWG variant is

highly dependent from the initial parameterization (we observed an

average of 500 policy evaluations with a maximum of about 1500).

As a consequence, in these settings FPS-RWG was much slower than

FPS-EA in producing a policy. The parameters estimated by the FPS

algorithms are shown in Table 1 and Table 2. Each row reports the pa-

rameters obtained from running the algorithms on different datasets

and the average reward value (mean from 5 runs) achieved during the

tests. It is possible to notice that, as expected, when the number of

samples increases, the variability of the parameterizations returned

by the FPS algorithms decreases.

The results observed by optimizing over the parameters of the

πtanh are close to what we expected, as the shape of the policy shown

by the FQI approach reminds to tanh(ω), so it seems the natural con-

trol law. For this reason, fitting this function directly on the policy

learned by FQI leads to parameterizations and performance similar

to those obtained by FPS algorithms.

To better highlight the difference between finding the parameteri-

zation that maximizes the expected return for a given family of func-

tions and fitting that function to an existing policy, we defined a dif-

ferent parametric function πlin:

πlin(θ) = θ1 · ω + θ2 · ω̇ + θ3 · ẋ. (5)

Using this policy family leads to two clearly distinct results, shown in

Figure 4: fitting it to the FQI policy simply finds the parameters that

minimize the difference between the actions performed by the FQI

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  100  200  300  400  500  600  700  800  900  1000  1100
-8

-7

-6

-5

-4

-3

-2

-1

 0

A
v
e
ra

g
e
 R

e
w

a
rd

Samples

FPS-EA
FQI

Figure 5. Comparison between FPS using EAs (optimizing parameters of
πlin) and the policy obtained by directly fitting πlin over the FQI policy on

the TiltOne balancing task. The graph shows the average reward per step
(computed on a 5s period) as a function of the number of samples in the

dataset. Curves are an average over 25 runs.

θ1 θ2 θ3

100 79.4 ± 47.6 0.10 ± 2.70 −0.048 ± 0.151
500 127.2 ± 15.5 2.73 ± 1.27 0.012 ± 0.037
1000 126.2 ± 11.5 3.01 ± 1.52 0.013 ± 0.030

Table 3. This table shows the mean values and the standard deviations of
the parameters of the linear function πlin identified by directly fitting the

linear function to FQI policy.

policy and the parametric one, while the FPS algorithm optimizes the

parameters in order to maximize the expected reward. Looking at the

graph, it is easy to notice that the fitted function is globally closer to

the FQI policy than the policy from FPS, but the actions around the

equilibrium point (ω = 0) are too soft for balancing the robot that

will fall soon, getting a bad reward value. On the other side, the policy

obtained from FPS methods is similar to πtanh around ω = 0, that is

where the robot is supposed to operate, leading to a better expected

reward value (see Figure 5 for performances and Tables 3 and 4 for

the average parameter values).

θ1 θ2 θ3

100 193.3 ± 98.8 1.15 ± 4.24 −0.147 ± 0.195
500 533.3 ± 217.9 13.36 ± 4.56 0.045 ± 0.239
1000 671.3 ± 178.1 5.92 ± 5.80 −0.126 ± 0.283

Table 4. This table shows the mean values and the standard deviations of
the parameters of the linear function πlin identified by the FPS-EA

algorithm.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

41



5 CONCLUSIONS

In this paper we have proposed fitted policy search, a direct pol-

icy search approach that, using a batch reinforcement learning algo-

rithm, evaluates offline the expected return of explored policies, thus

overcoming the main weaknesses of both BRL and DPS techniques

when applied to robotic problems. Experiments performed with a

two-wheeled balancing robot have shown that using DPS methods

on a restricted class of smooth policies can outperform a value-based

algorithm as FQI algorithms, leading to results comparable to the

ones of the reference PID controller, even using a 2s long training

dataset. Compared to other DPS approaches this method avoids to

use the robot for evaluating a large number of policies, avoiding dan-

gerous tests on the robot, and making the learning process feasible

without the need of simulation tools.

Some aspects of the proposed approach will be improved in future

works. Using a Monte Carlo approximation to compute the integral

over the action space in the fitted policy evaluation algorithm, it will

be possible to consider stochastic policies, thus opening the door to

advanced policy gradient algorithms, such as natural gradients [14,

23]. In the near future, the proposed approach will be applied to more

complex tasks, as controlling the balancing robot providing position

and velocity set-points while maintaining its equilibrium.

REFERENCES

[1] A. Antos, R. Munos, and C. Szepesvari, ‘Fitted q-iteration in continu-
ous action-space mdps’, in Advances in Neural Information Processing

Systems 20, eds., J.C. Platt, D. Koller, Y. Singer, and S. Roweis, vol-
ume 20, 9–16, MIT Press, Cambridge, MA, (2008).

[2] L. Baird, ‘Residual algorithms: Reinforcement learning with function
approximation’, in Proceedings of the Twelfth International Conference

on Machine Learning, pp. 30–37, (July 1995).
[3] A. Bonarini, C. Caccia, A. Lazaric, and M. Restelli, ‘Batch reinforce-

ment learning for controlling a mobile wheeled pendulum robot’, in
Artificial Intelligence in Theory and Practice II: IFIP 20th World Com-

puter Congress, TC 12: IFIP AI 2008 Stream, September 7-10, 2008,

Milano, Italy, volume 276, pp. 151–160. Springer Verlag, (July 2008).
[4] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuška, ‘Policy search

with cross-entropy optimization of basis functions’, in Proceedings

2009 IEEE International Symposium on Adaptive Dynamic Program-

ming and Reinforcement Learning (ADPRL-09), p. 153160, (2009).
[5] D. Ernst, P. Geurts, and L. Wehenkel, ‘Tree-based batch mode reinforce-

ment learning’, Journal of Machine Learning Research, 6(1), 503–556,
(April 2005).

[6] P. Geurts, D. Ernst, and L. Wehenkel, ‘Extremely randomized trees’,
Machine Learning, 63(1), 3–42, (2006).

[7] F. Gomez, J. Schmidhuber, and R. Miikkulainen, ‘Efficient non-linear
control through neuroevolution’, in Proceedings of the European Con-

ference on Machine Learning (ECML-06, Berlin), volume 4212, pp.
654–662. Springer, (2006).

[8] G. J. Gordon, Approximate Solutions to Markov Decision Processes,
Ph.D. dissertation, Carnegie Mellon University, June 1999.

[9] G.J. Gordon, ‘Stable fitted reinforcement learning’, in Advances in Neu-

ral Information Processing Systems 8, 1052–1058, MIT Press, (1996).
[10] V. Heidrich-Meisner and C. Igel, ‘Evolution strategies for direct pol-

icy search’, in Parallel Problem Solving from Nature–PPSN X, ed.,
G. Rudolph, pp. 428–437. Springer-Verlag, (2009).

[11] V. Heidrich-Meisner and C. Igel, ‘Neuroevolution strategies for
episodic reinforcement learning’, Journal of Algorithms, 64(4), 152–
168, (2009).

[12] J.H. Holland, Adaptation in natural and artificial systems, MIT press
Cambridge, MA, 1992.

[13] N. Kohl and P. Stone, ‘Policy gradient reinforcement learning for
fast quadrupedal locomotion’, in IEEE International Conference on

Robotics and Automation, volume 3, pp. 2619–2624, (2004).
[14] F. Melo and M. Lopes, ‘Fitted natural actor-critic: A new algorithm for

continuous state-action mdps’, in Proceedings of ECML Workshop on

Principles and Practice of Knowledge Discovery in Databases, volume
5212, pp. 66–81. Springer, (2008).

[15] D.E. Moriarty, A.C. Schultz, and J.J. Grefenstette, ‘Evolutionary algo-
rithms for reinforcement learning’, Journal of Artificial Intelligence Re-

search, 11(1), 241–276, (1999).
[16] R. Munos and C. Szepesvári, ‘Finite-time bounds for fitted value itera-

tion’, Journal of Machine Learning Research, 9, 815–857, (2008).
[17] G. Neumann and J. Peters, ‘Fitted q-iteration by advantage weighted

regression’, in Advances in Neural Information Processing Systems 22

(NIPS 2008), 1177–1184, MIT Press, (2009).
[18] A.Y. Ng and M. Jordan, ‘Pegasus: A policy search method for large

mdps and pomdps’, in Proceedings of the 16th Conference on Uncer-

tainty in Artificial Intelligence, pp. 406–415, (2000).

[19] D. Ormoneit and Ś. Sen, ‘Kernel-based reinforcement learning’, Ma-

chine Learning, 49(2), 161–178, (2002).
[20] J. Peters and S. Schaal, ‘Policy gradient methods for robotics’, in Pro-

ceedings of the IEEE International Conference on Intelligent Robotics

Systems (IROS 2006), pp. 2219–2225, (2006).
[21] J. Peters and S. Schaal, ‘Reinforcement learning of motor skills with

policy gradients’, Neural Networks, 21(4), 682–697, (2008).
[22] J. Peters, S. Vijayakumar, and S. Schaal, ‘Reinforcement learning for

humanoid robotics’, in Proceedings of the third IEEE-RAS interna-

tional conference on humanoid robots, pp. 1–20, (2003).
[23] J. Peters, S. Vijayakumar, and S. Schaal, ‘Natural actor-critic’, in

Proceedings of the 16th European Conference on Machine Learning

(ECML 2005), volume 3720, pp. 280–291. Springer, (2005).
[24] M. Riedmiller, ‘Neural fitted q iteration-first experiences with a data ef-

ficient neural reinforcement learning method’, in Proceedings of the

Sixteenth European Conference on Machine Learning, pp. 317–328.
Springer, (2005).

[25] M. Riedmiller, J. Peters, and S. Schaal, ‘Evaluation of policy gradient
methods and variants on the cart-pole benchmark’, in Proceedings of

the IEEE International Symposium on Approximate Dynamic Program-

ming and Reinforcement Learning (ADPRL 07), pp. 254–261, (2007).
[26] R.S. Sutton and A.G. Barto, Reinforcement learning, MIT Press, Cam-

bridge, MA, 1998.
[27] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour, ‘Policy gradi-

ent methods for reinforcement learning with function approximation’,
in Advances in Neural Information Processing Systems 12, volume 12,
1057–1063, MIT Press, (2000).

[28] G. Tesauro, ‘Td-gammon, a self-teaching backgammon program,
achieves master-level play’, Neural computation, 6(2), 215–219,
(March 1994).

[29] S. Timmer and M. Riedmiller, ‘Fitted q-iteration with cmacs’, in Pro-

ceedings of the IEEE International Symposium on Approximate Dy-

namic Programming and Reinforcement Learning (ADPRL 07), pp. 1–
8, (2007).

[30] JN Tsitsiklis and B. Van Roy, ‘An analysis of temporal-difference learn-
ing with function approximation’, IEEE Transactions on Automatic

Control, 42(5), 674–690, (May 1997).
[31] Chris Watkins and Peter Dayan, ‘Q-learning’, Machine Learning, 8,

279–292, (May 1992).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

42



Using only aspects of interaction
to solve shared attention

Renato Ramos da Silva1 and Roseli Aparecida Francelin Romero2

Abstract. The communication between humans can be seen by the
evolution of important cognitive functions and one of them is known
as shared attention. This function usually is learned by humans in a
period of childhood using basic set of structures and mechanism. In
order to provide this learning ability in robots some approaches have
been proposed. Models based on temporal difference, neural net-
works, probabilistic and reinforcement learning are examples used in
several works. In our previous work [5], we have demonstrated how
our robotic architecture enables a robot to learn the primary shared
attention behavior. However, this needs some improvements to en-
able the development of others important parts in the construction of
social robots. In this article, we have enhanced our robotic architec-
ture, which is inspired on behavior analysis, to provide to the robot
or agent, the capacity of sharing attention using only aspects of in-
teraction. We have incorporated two improvements on ETG learning
algorithms, named FAIETGQ and FAITEG, in it to simulate shared
attention. Then, a set of empirical evaluations has been conducted in
the social interactive simulator for performing the task of shared at-
tention. The performance of this two algorithms have been compared
with the Q-Learning algorithm, contingency learning algorithm and
ETG algorithm. The experimental results show that the FAIETGQ
algorithm required less memory capacity and presented better per-
formance than other algorithms for shared attention problem.

1 INTRODUCTION

Infants, before near to complete one year, are able to follow another
person’s gaze to a location outside of their visual field: a key first
step in establishing communication [31]. The communication be-
tween humans can be seen by the evolution of important cognitive
functions and one of them is known as shared attention, also called
“mutual gaze” by some authors [23].

The term shared attention is typically used to denote the attention
of two people shared by looking at each other, rather than coordi-
nating their attention on a third entity. While some authors, we use
this assumption, use the terms joint and shared attention interchange-
ably to refer to the matching of one’s focus of attention with that
of another person, other authors make a distinction between them.
Tomasello assigns joint attention as the attention provides by which
two or more people coordinate and communicate their intentions, de-

1 Departamento de Ciência de Computação - Instituto de Ciências
Matemáticas e de Computação - Universidade de São Paulo - Campus de
São Carlos - Caixa Postal 668 - 13560-970 São Carlos, São Paulo, Brazil,
email: ramos@icmc.usp.br

2 Departamento de Ciência de Computação - Instituto de Ciências
Matemáticas e de Computação - Universidade de São Paulo - Campus de
São Carlos - Caixa Postal 668 - 13560-970 São Carlos, São Paulo, Brazil,
email: rafrance@icmc.usp.br

sires, emotions, beliefs, and/or knowledge about a third entity (e.g.
an object or a common goal) [30].

But how does shared attention emerges at infants? One view ex-
plains the emergence of gaze following by postulating that infants
gradually discover that monitoring their caregivers direction of gaze
allows them to predict where interesting visual events will be [31].
Corkum and Moore demonstrated that 8-month-old infants can be
trained to follow their caregivers gaze in a contingent reinforcement
paradigm, where an interesting visual stimulus was shown if the in-
fant followed the adults gaze to the stimulus location [4].

Triesch et all, also explains their basic set to construct an agent
to learn shared attention and the approach emphasizes the role of
biologically plausible choice of reinforcement learning [31]. This set
includes perceptual skills and preferences, reinforcement learning,
habituation and a structured social environment.

Reinforcement Learning (RL) [29] is a computational technique
that allows an autonomous agent to learn a behavior via trial and
error. The RRL task is very similar to the traditional RL task except
that a relational representation is used for the states and actions [7].
Relational or first-order representation uses atoms, facts and relations
to represent the environment.

This article reports an ongoing work aimed at developing our
robotic architecture, which is inspired on Science of Behavior Anal-
ysis [2, 3, 17]. In order to provide this, we proposed two enhanced
of ETG algorithm [5] by using only aspects of interaction. After this,
we have incorporated five different learning algorithms in our robotic
architecture. It has been inserted and evaluated in the simulator of so-
cial interactions. Then, the robotic architecture has been evaluated in
the context of the shared attention.

This article is organized as it follows. We start with a brief back-
ground and related work section making the case for a rigorous ex-
perimental study of joint attention behaviors. After, we describe our
robotic architecture, in which the learning mechanism will be in-
serted in, and social interaction simulator. In section 4, we present
the basic concepts of this learning method and the main algorithms.
Then, the main problem on development the reinforcement learning
to resolve the shared attention are presented in section 5. The section
that follows, we present the proposed FAIETGQ and FAIETG algo-
rithms. Afterward, in section 7, the experimental results from a set of
experiments carried out to evaluate the performance of the proposed
architecture with each learning algorithm tested. A comparative anal-
ysis among the four learning algorithms is also been presented. Fi-
nally, in section 8, are presented the conclusions and future works.

2 BACKGROUND AND RELATED WORKS
The observable behaviors of an individual by attending to objects
and events that others attend to can be regarding of “shared atten-

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

43



tion” idea. In its simplest form, shared attention requires the estab-
lishment of eye contact between two people, followed by one person
intentionally breaking it to be able to look at an object of interest,
followed by a subsequent fixation of that object by the other person.
In child-parent interaction, there is convincing evidence that even
young children are sensitive to gaze and pointing cues and that they
use those cues to follow the adult social partners attention, which
facilitates early cognition and learning, according to developmental
psychology [1, 12, 35].

At the end of the last century and the beginning of this can be
considered as the starting point of studies of shared attention in the
area of Human−Robot Interaction (HRI), particularly with Scasse-
lati’s works [24, 25]. Recently, several HRI studies evaluated shared
attention behavior and we can divide in two groups. The basic differ-
ence into groups is that one is focused on interaction, where speech
is used, and others on the learning method.

The first group we have found works using a story telling robot
to find subjects were better able to recall the story when the robot
looked at [13], a study where humans watched a video of a robot
producing statements about a visual scene in front of it [34], a guide
robot designed using data from human experiments to turn its head
towards the audience at important points during its presentation [28].

Mutlu et al. [14] studied the extent to which eye-gaze behavior of
the robot could signal participant roles (in a conversation) to human
observers and confirmed that subjects’ behaviors conformed to the
communicated roles, and finally, investigates the temporal character-
istics of shared attention processes in human-robot interactions in an
experimentally unprecedented way [35].

Other group we have found works using a temporal-difference
(TD) reinforcement learning scheme for learning joint visual atten-
tion [11]. Their model is limited in the sense that the infant only gets
reward from the moving object operated by the observer. Also the
caregiver’s face is treated separately from the objects and does not
lead to any reward.

Nagai et al. [16, 15] used face edge features and motion infor-
mation (optical flow) to estimate the sensor motor coordination be-
tween these two inputs and the motor output using two separate neu-
ral networks. Their model does not utilize the depth information and
thus can not handle ambiguous situations where an object appears in
robots gaze direction that may not be located within the caregivers
gaze direction.

Shon et al. [26] presented a probabilistic model of gaze imita-
tion where estimated gaze vectors are used in conjunction with the
saliency maps of the visual scenes to produce maximum a posteriori
(MAP) estimates of objects looked at by the caregiver. A biologi-
cally plausible account of the development of gaze estimation skill is
missing from their work.

Kim et al. [10] applied their model, based on basic set [31], on a
robot head. They have been used an actor-critic reinforcement learn-
ing model for learning gaze following. They used map as additional
information: a saliency map, representations of the caregiver head
direction h and the caregiver eye direction e.

Finally, Silva et al. [5] have showed how shared attention can be
resolved with reinforcement learning and relational representation.
They have used ETG algorithm as learning mechanism in the robotic
architecture. Here, the additional information used was called neces-
sity, that represent an internal necessity of the robot. The basic idea
of it was provided the ability of pro actively. But the same time it was
used to help learn shared attention causing a large dependency.

3 ROBOTIC ARCHITECTURE AND
SIMULATOR

The main objective of this chapter is to provide an basic overview of
robotics architecture and social interaction simulator developed by
us. More information can be found at [18, 21, 20, 6, 19, 5]

3.1 Our Robotic Architecture

The robotic architecture that is under development aims to build in-
telligent agent and it is based on Behavior Analysis theory[2, 3, 17].
This study is motivated to help in understanding the human being and
help someone in many parts of the day to day, like robots assistants
and entertainment activities. Thus, it is composed by three main mod-
ules: Stimulus Perception is State Estimation, Consequence Control
is Motivation, and Response Emission Module is the Controller.

Figure 1 illustrates the general organization of the architecture and
the interaction among the three main modules. Arrows indicate the
flow of information in the three modules of the architecture. The cir-
cles indicate the methods and component structures of the modules.

The Stimulus Perception Module encodes stimulus from environ-
ment. Those stimulus are then used by the Consequence Control to
verify internal necessity of robot and Response Emission Modules
for learning and exhibition appropriate behaviors.

Figure 1. General organization of the architecture [21].

The Stimulus Perception Module may employ algorithms of data
acquisition, a vision system, and a voice system, depending on the
application domain. This module detects the state from the environ-
ment and encodes this state using an appropriate representation. The
relational representation was chosen because it enabling the repre-
sentation of large spaces in an economical way.

The Response Emission Module is composed by a learning mech-
anism that constructs a nondeterministic policy for response emis-
sion, that is, what response is to be emitted on the presence of certain
antecedent stimulus. And the response emission mechanism that re-
ceives the information from learning mechanism and convert it in
action to be executed by the motors.

The Consequence Control Module is composed by a motivational
system modeled as a competitive artificial neural network with re-
current connections. It simulates internal necessities of the robot and
generate a reward on the basis of the internal state estimate. An arti-
ficial motivational system may enable a robot to pro actively interact

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

44



with the environment, driving its behaviors to satiate its artificial in-
ternal necessities. The motivational system is formed by necessity
units that are implemented as a simple perceptron [9] with recurrent
connections. A necessity unit simulates the internal necessities of an
individual. A positive value of a necessity unit, above a predefined
threshold, indicates the privation of the robot to certain reinforce-
ment stimulus. In this way, the architecture supplies mechanisms to
simulate privation states and satisfaction of necessities, and mech-
anism to determine reinforcements as consequences of an emitted
response.

In the process of developing our robotics architecture new mod-
ules, such as emotions, mood and others, will be incorporated into.
These new modules have direct influence in controlling the robot’s
necessity. A learning module that has a little or no dependence is a
positive factor for the development of any robotics architecture de-
veloped for social robotics.

3.2 Social Interactive Simulator

To evaluate the proposed architecture, an interactive social simulator
has been developed by us and it is presented here. It is based on works
of Triesch and his colleagues [31]. This social interaction simulator
is able to simulate an interaction between a robot and a human in
a controlled social environment. Figure 2 shows the interface of the
developed simulator. In this figure, on the left side of the interface
is the control panel that enables interactive or automatic simulations,
the human being is fixed on the upper side of the interface and the
robot is fixed on the lower side of the interface.

Figure 2. Social interactive simulator interface [21].

In order to simulate the shared attention task, it has been defined
three entities that can be manipulated through functions of the simu-
lator. They are a human, a robot, and two toys. The human being and
the robot are positioned face to face, at a distance of approximately
50 cm from each other. The simulator enables that up two toys are
positioned in the social environment. A toy can be positioned at any
empty place of the social environment at any moment.

The social environment was modeled in the following way. Either
the robot and the human can turn left or right their heads up to 90◦.
The robot has its central focus in 0◦ and has its visual field limited

by a foveation parameter λ◦, starting from the central focus, in [−λ◦,
+λ◦]. Figure 3 shows the modeling of the visual field of the robot,
in which lines represent the boundaries of the visual field.

Figure 3. Visual field of the robot [21].

The position of the robot’s head is given by θr , that can assume
values in [−90◦, +90◦]. The position of the human being’s head is
given by θa, that also can assume values in [−90◦, +90◦]. When an
object i is positioned in the social environment, the simulator maps
the angle between this object and the robot’s focus, that is, the dis-
tance that the robot must move its head to focus the positioned ob-
ject. This mapping is given by θoi, that can assume values in [−90◦,
+90◦]. In this way, if an object is positioned in the environment, the
simulator verifies if the same is inside the robot’s field of vision, by
comparing its position in relation to the robot’s focus, considering
the foveation of the robot. Figure 4 shows the positioning parameters
of the robot, objects and human being, in which lines represent the
distances between the robot’focus and objects as the position of the
robot’s head and human’s head.

Figure 4. Positioning control [21].

Additionally, the simulator provides an adult attending stimulus
that simulates attention from human being to the robot. The simula-
tor provides the stimulus when the human and the robot are keeping

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

45



eye contact and when the robot correctly follows the human gaze.
This mechanism was incorporated in the simulator to validate the
behavioral analysis presented by Dube and their colleagues [8], stat-
ing that the human serves as motivational operator in the context of
shared attention learning.

During a simulation, the simulator executes interactions contin-
ually and each interaction takes 1 second. The simulator is able to
position up to two simultaneous objects in the social environment,
on places stochastically selected with probability ρo. These objects
are positioned in the respective places for a time determined by the
user (given in seconds). Additionally, the simulator is able to turn the
human being’s head to focus an object present in the environment
or to focus the robot. The object that receives the human’s focus is
stochastically selected with probability ρoi and the human keeps his
focus at the selected object for a time determined by the user (given
in seconds), before turn his head to another object or to the robot.

4 RELATIONAL REINFORCEMENT
LEARNING

In Reinforcement Learning (RL) [29], an agent navigates through an
environment trying to earn rewards or avoid penalties. The environ-
ments state is described by a set of features, and the agent takes ac-
tions to cause the state to change. In one common form of RL called
Q-learning [32], the agent learns a Q-function to estimate the value
of taking an action from a state. An agents policy is typically to take
the action with the highest Q-value in the current state, except for
occasional exploratory actions. After taking the action and receiving
some reward, the agent updates its Q-value estimates for the current
state.

If we consider an agent navigator problem, we can represent the
environment using a matrix with three dimension. Two of this to rep-
resent the space and one to store the Q-value for each action.

Relational reinforcement learning (RRL) has emerged in the ma-
chine learning community as a promising subfield of reinforcement
learning (RL). It upgrades RL techniques by using relational repre-
sentations for states, actions, and learned value-functions or policies
to allow natural representations and abstractions of complex tasks
[22].

The RRL task can be defined as it follows [7],
Given:

• A set of possible states S (represented in a relational format),
• a set of possible actions A (represented in a relational format),
• an unknown transition function δ: S x A→ S (this function can

be nondeterministic)
• a real-valued reward function r: S x A→<.
• Background knowledge.

the aim is to find a policy for selecting actions π∗: S→ A that max-
imizes a value function V π(st) for all st ∈ S.

Possible extensions of the (state, action) representation that can
be added as background knowledge and it generally valid about the
domain (states in S) can be specified in RRL [7].

RRL leads to a serious state space reduction. Then, the struc-
ture to represent the environment needs change to take advantage of
this. Driessens [7] has cited three different approaches: decision trees
called TG algorithm, kernel-based called RIB algorithm, or Gaussian
Processes and kernels called KBR algorithm.

Other algorithm can be used ETG algorithm [27]. It is an enhance-
ment of TG algorithm that was evaluated at the block word simulator.

After, it was inserted in the robotic architecture and evaluated at the
social interactive simulator [5].

The development of RRL algorithm to resolve the shared attention
implies in, at least, one great problem.

5 THE PROBLEM OF SHARED ATENTION
USING REINFORCEMENT LEARNING

One point when somebody start a project to development a social
robot is the shared attention. The first perspective is to use only com-
puter vision to resolve it, for example, we can calculate the angle
that the caregiver turns and rotate it’s head in other direction. It is a
good idea, but the robot does not learn. This way put shared attention
as innate reflex. According to psychology that behavior is learned in
stages.

The choice of RL is related with biologically plausible of it [31].
Then, what are the difficulties to apply only RL on shared attention
problem? In order to answer this question, we show through several
steps as the main problem is hampering the implementation of it.

The Figure 5 shows the first stage of shared attention, when the
robot establish eye contact with an human. In the figure the human is
on top. Usually, the robot learn to do this with some interaction with
the environment without objects and the human do not take action.
The only positive reinforcement that the agent receives is to look at
men. Then, it learns to give attention to a human.

Figure 5. Eye contact.

After this, when the human has the attention of the robot one or
more objects or events appear in the environment. The human look
at it and the robot take a new state. The learning process the robot
can use its knowledge or can explore the environment. It receive a
positive reward if it looked at the same object, otherwise it receive a
negative reward. Here, we adopt that the robot looked at the object.
But the object can appear in several places. The Figure 6 has given
us an example where the robot looked at a correct object in different
places.

The moment when the robot looked at the object, in both
cases(Figure 6 a or Figure 6 b), we have the same state for robot.
At the end, the robot need establish eye contact again.

The great problem of use only RL algorithm to resolve shared at-
tention is related with a large number of state meaning one state for
robot. Then, the robot need a different action of the same state (robot
view) to return establish eye contact. For example, in the Figure 6 a

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

46



Figure 6. Look at the object.

the robot needs the action X1 and in the Figure 6 b, in the robot view
is the same, it needs a different action. This problem appear when the
robot look at some object or when does not find it(negative reward)
after had made eye contact.

In order to solve this problem, the algorithms based on RL have
been used additional information. Kim used a Saliency Map, Care-
giver Head Direction and Caregiver Eyes Direction from vision sys-
tem module [10]. Otherwise, Silva used agent’s necessity from mo-
tivational system module [5].

On the next chapter we present an improvement of this way to
resolve shared attention.

6 ALGORITHMS PROPOSED
The dependency of the learning module from others has hindered the
development of robotic architecture. We are looking for a solution
so that we could only use aspects of interaction. Then, we found
the possibility of using the previous action as a way of solving the
problem.

The main idea is the fact that it is not necessary to worry about
the moves that are made during the search, only with that action that
resulted in the state that subsequently led to positive reinforcement.
Using this purpose is that this work, we are proposing two enhanced
of the current version of ETG algorithm [6].

The ETG algorithm learns a control policy for an agent as it moves
through the environment and receives rewards for its actions. An
agent perceives a state si, decides to take some action ai, makes a
transition from si to si+1 and receives the reward ri. The task of
the agent is to maximize the total reward it gets while doing actions.
Agents have to learn a policy which maps states into actions. Both
enhancement follow this idea.

The learning mechanism takes from the environment state, an ne-
cessity of the agent, then it chooses (using the current policy) and
takes an action. This process changes the state and the agent receives
its reward. The reward can be either positive (equals to 10) or nega-
tive (equals to -1). After this occurred, the qvalue is computed by:

Q̂i ← Q(si, ai) + α[ri+1 + γmax(Q(si+1, ai+1))−Q(si, ai)] (1)

Then, the relational regression engine receives a set of (state, ac-
tion, qvalue, necessity) and tests the internal nodes if the state al-
ready exists. In the case this performance is false, the state is inserted
in the tree and the leaf receives the action with the qvalue and neces-
sity values, forming a new branch. Otherwise, it updates the qvalue
for respective action in the leaf node.

In a leaf node, more than one action can be considered. For an eas-
ier access to the most adequate action, these actions can be ordered
in decreasing order according to their qvalue always that an example
is inserted or updated. Each leaf also has a necessity associated with
action and it refers to a necessity of the robot to choose this action
on this state. Here, we use only the attention necessity. This process
is repeated until there are not more interactions to be executed.

The great influence of necessity in the learning process hinders
the development of other modules. The first change, we called as
Free Additional Information ETG with Q-value(FAIETGQ), elimi-
nates the interference of it and stores only positive examples in the
tree. In a second step we try to verify the importance of the Q value
in the learning process, then, we use all first changes but we removed
the Q-value and we called it as Free Additional Information ETG
(FAIETG).

In Algorithm FAIETGQ() is showed the processing of first en-
hancement ETG. The algorithm starts by initializing the Q-function
and creates an empty regression tree [5].

Then, the set of (state, action, qvalue, last action) is presented to
relational regression engine. This process is repeated until there are
not more interactions to be executed. All processing can be found in
Algorithm FAIETGQ().

FAIETGQ()
BEGIN
initialize the Q-function hypothesis(Q_0)
and create a tree with a single leaf

i = 0
REPEAT
take state s_i
take action a_(i-1)
choose a_i for s_i using a policy
derived from the current hypothesis
Q_i

take action a_i, observe r_i and
s_{i+1}
IF(r_i positive){
Update Q_i using the equation 1
Update relational regression
algorithm
using (s_i, a_i, Q_i, a_(i-1))$ to
produce Q_(i+1) // COMMENT{Use
algorithm treeEngine()}

}
i = i+1

UNTIL {no more interaction}
END

The relational regression engine receives a set of (state, action,
qvalue, last action) and tests the internal nodes if the state already
exists. In the case this performance is false, the state is inserted in
the tree and the leaf receives the action with the qvalue and previ-
ous action (last action) values, forming a new branch. Otherwise, it
updates the qvalue for respective action in the leaf node.

In a leaf node, more than one action can be considered. For an eas-
ier access to the most adequate action, these actions can be ordered in
decreasing order according to their qvalue always that an example is
inserted or updated. Each leaf also has a previous action associated
with action and it refers to action took by robot that result on this
state. The tree algorithm adopted as a relational regression engine is
presented in Algorithm treeEngine().

treeEngine()
BEGIN
REPEAT
sort the state down the tree using

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

47



the tests of the internal nodes
until to reach leaf node or null
IF(the node is a leaf)
IF(action exists)

the Q-value is updated for the
action in the leaf node
according to the example

ELSE
the Q-value is inserted and the
previous action for the action
in the leaf node according to
the example

ENDIF
ELSIF{the null is attained}

generate a node
ENDIF

UNTIL{the example in a branch}
IF{necessary}
order actions in decreasing order

ENDIF
END

At the second approach, we have followed all first changes and
removed the Q-value. This proposal was used to evaluate the impor-
tance of Q-value for learning algorithm, because it is related mainly
to create a better route to a goal.

FAIETG()
BEGIN
initialize creating a tree with a
single leaf

i = 0
REPEAT
take state s_i
take action a_(i-1)
choose a_i for s_i using a policy
derived from the current tree.

take action a_i, observe r_i and
s_{i+1}
IF(r_i positive){
Update relational regression
algorithm using (s_i, a_i,
a_(i-1)) // COMMENT{Use
algorithm treeEngine2()}

}
i = i+1

UNTIL {no more interaction}
END

treeEngine2()
BEGIN
REPEAT
sort the state down the tree using
the tests of the internal nodes
until to reach leaf node or null
IF(the node is a leaf)
IF(action not exists)

the action with its previous
action is inserted in the
leaf node according to the
example

ENDIF
ELSIF{the null is attained}

generate a node
ENDIF

UNTIL{the example in a branch}
END

Besides the changes mentioned the new algorithm still have a fur-
ther improvement in the first 100 rounds of learning. During this pe-
riod, when the agent makes his search for the best action for present
state, he does not choose that action has already been made earlier in
which he received a negative reward.

Although the new algorithms allow the removal of the conse-
quence control module, this will still remain because it is responsible
for detects reinforcements received from the environment.

7 EXPERIMENT

In this section, the main results of the experiments carried out to eval-
uate the proposed learning algorithms are presented and discussed.
The experiments were carried out employing the simulator previ-
ously presented, in the context of the emergence of shared attention.
The purpose was to evaluate the capabilities of the new version of
the robotic architecture on exhibit appropriate social behavior, learn
from interaction, and generalize the learned behavior rules.

In the experiments three algorithms were utilized, in addition to
previously proposed.Contingency Learning and RL, a version of Q-
learning for our architecture that uses matrix, proposed by Policastro
et al.[20]. Other algorithm is known to be precursors of the methods
proposed in this paper, the ETG algorithm [5].

The experiments were composed by a learning phase of 10,000
time units (10,000 seconds in the simulator). During the learning
phase, the human being initially kept the focus on the robot until
it establish eye contact with him, characterized by 3 time units look-
ing each other. Then, two objects were positioned in the environment
and the human being turned his gaze for one of these objects, obey-
ing the probabilities defined in the social interactive simulator. The
human keeps his gaze at the object by 5 time units. Afterwards, the
objects are then removed from the environment and the human turns
his gaze to the robot, keeping the robot make eye contact again. This
procedure is done in order to simulate a interaction where two agents
are keeping eye contact and then one turns his gaze to an interesting
event or object.

In the first 100 time units of learning phase, no objects are posi-
tioned in the environment and the human kept his focus on the robot
the whole time, so the robot have learned that it may obtain the hu-
man attention by keeping eye contact with him. This procedure was
done to shape the robot’s behavior of looking for a human and keep-
ing eye contact. After this, the learning phase was resumed using two
objects as stated above. During the learning, the robot looks for the
human. However, when an object is positioned in the environment
and the human turns his gaze to it, the robot looses the human at-
tention and starts to seek anything in the environment. Additionally,
if the robot looks for a toy which the human this keeping his gaze,
the human gives attention to the robot, in relation to the toy. In this
way, after a history of reinforcement the robot will learn to follow
the human’s gaze to receive his attention and to satisfy its needs of
socializing.

The learning capabilities of the architecture was analyzed by ob-
serving the robot interacting with the human and the environment,
and computing a measure, the correct gaze index (CGI). The CGI
measure is based on measures prosed by Whalen [33] and is defined
as the frequency of gaze shifts from the human to the correct location
where the human is looking at, given by:

CGI =
#shifts from the human to correct location

#shifts from the human to any location
(2)

To quantify the learning capabilities of the architecture through
the learning of gaze following, at specific points during the learn-
ing process we temporarily interrupt the learning phase to evaluate
its behavior. This evaluation was done by 10 runs of 500 time units
(500 seconds in the simulator). For each run, the CGI value, given

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

48



by Equation (2) was computed. After the evaluation phase, the learn-
ing process was resumed. A total of 20 interrupt points were placed.
The whole procedure was performed 10 times and then a mean and
standard deviation was calculated for each evaluation phase.

During the evaluation phase, the human initially kept the focus on
the robot until it establishes eye contact with the human, character-
ized by 3 time units keeping eye contact. Then two objects were po-
sitioned in the environment and the human turned his gaze for one of
these objects. However, in the evaluation phase, the object to which
the human should turn his gaze was place on a position given by
pre-established sequence (to prevent non determinism in the results).
The second object (the distractor) was placed on an empty position,
obeying the probabilities defined in the social interactive simulator.
Once the robot turns its head to any direction, the simulator veri-
fies if it is looking to the correct position in the environment (a toy
which the human is looking for) or not, and update the CGI measure.
This procedure takes 1 time unit. Afterwards, the objects are then
removed from the environment and the human turns his gaze to the
robot, keeping the robot make eye contact again.

For the experiments, the architecture knowledge was set as fol-
lows. Four stimulus were declared: face, object, attention, and en-
vironment, where attention is a reinforcer stimuli. Two facts were
declared to define that red and blue objects are toys. Thirteen facts
where declared in order to differentiate the human’s head pose in
frontal pose, six poses of left profile and six poses of right profile.
Additionally, two more facts were declared to define when the robot
is focusing the human or a toy.

In the response system was adjust the learning constant (α pa-
rameter) was set to 0.2. The discount factor (γ parameter) was set
to 0.1. The exploration factor(ε parameter) was set to 0.05. Fourteen
responses were defined so the robot can look at the human and search
toys in six regions at left side and six regions at right side. This was
done to divide the environment in regions of interest to make pos-
sible to follow the gaze to correct locations even in the presence of
distractor toys.

The motivational system was set as follows. One necessity units
were created: socialize. The activation threshold of the motivational
system was set to 0.70. The sigmoid function inclination of the ne-
cessity unit (δ parameter) was set to 0.20. For the socialize unit, the
Bias of the unit was set to 1.00 and its weight was set to 0.5, the
weight of the recurrent connection was set to 1.00, weights of the
input pattern (hear(attention), see(frontal(face)), see(toy(object)),
see(looking − toy(object))) was set respectively to −1.00, 0.05,
0.05 and 0.00.

When we are dealing with shared attention, a fact very important
that it must be considered in all interactions is the number of times
that the robot establishes eye contact with human. This is a essential
fact for shared attention. The robot, through the simulator, can one of
both options: to find anything in the environment or pay attention to
human. If the robot choose only the first option, it could not simulate
the shared attention. Because this, it is important that the learning
algorithm maximizes the number of established eye contact.

The Figure 7 shows the average number of times that the robot es-
tablishes eye contact with human for each evaluation phase by using
each one of the algorithms. In this figure, it is showed the beginning
of the interaction between human and robot, in a total of 125 possible
opportunities to establish eye contact each other.

The Figure 8 shows the same evaluation of the previous figure, but
it considers the standard deviation for each evaluation phase.

In performing the analysis of the Figure 7 and Figure 8 we can
verify that the new proposal FAIETGQ achieved a better final re-

Figure 7. Average of attention obtained by human from the robot during
evaluation phase.

Figure 8. Average and standard deviation of attention obtained by human
from the robot.

sult than the other techniques. It still shows an increasing learning
throughout the process, in addition to gradually reduce the standard
deviation. This shows that it could learn to give attention to human.
The graphics also show that the RL technique achieves a lower level
of the other algorithms.

Figure 9 shows the performance, the learning progress over the
time, of five different learning algorithms used as learning mecha-
nism in our architecture to solve shared attention. It plots the CGI
average value measured for each evaluation phase, at specific points
during the learning process. Additionally, the Figure 9 shows the
same the same evaluation with the standard deviation (indicated by
error bars), for each run.

Figure 9. Learning evolution during the experiments.

Initially, it can be seen that all of the algorithms have not any
knowledge about the problem. After the first run, all of them improve
your knowledge attaining near of 80% of maximum CGI value, ex-
cept the new proposals. In this stage, the robot or agent, learns a lot
about the problem. After this, the contingency learning do not im-
prove your knowledge until the end and this fact can be seen by your
curve, remaining constant. Similarly the algorithm FAIETGQ starts
like the others and gets an average of 60%. In the following section
an evolution patarmar the same, and that does not change.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

49



The ETG and RL algorithms have an slightly improve your learn-
ing after the first stage. Their curves are increasing over the time
until to attain a stabilization level. FAIETGQ is different from oth-
ers. It has a great and constant evaluation before first six runs and
after it has a slightly improve until the end of the process. This tree
algorithms have the same performance at the end of the performance.

Figure 10. Attention Obtained by human of the robot.

A deeper analysis can be made considering Figures 7 and 9. Con-
sidering the factors of learning and the number of established eye
contact, you can say that the FAIETGQ algorithm achieved better re-
sults. The experimental results showed that the contingency learning
algorithm and FAIETG algorithm established a good number of eye
contact than others, but it did not get a good CGI value compared to
others. On the other hand, the RL established a lower number of eye
contact than others, but it got a good CGI value. ETG presented a
average value in both experiments, it is a good option. Overall, FAI-
ETGQ has the better results with establish eye contact and take a
good CGI result.

Another factor analysis is in relation to the memory requirements
necessary for the algorithms: Q-Learning and ETG. The Q-Learning
uses as a mechanism for knowledge representation, in this case, a Q-
Table of 3,150 positions of memory. ETG algorithm used 68 nodes,
with 29 leaf nodes in which 328 positions were occupied for the stor-
age of actions, totalizing 396 positions of memory. However, FAI-
ETGQ and FAIETG used 50 nodes, with 21 leaf nodes in which 63
positions were occupied for the storage of actions, totalizing 113 po-
sitions of memory. This demonstrates clearly that FAIETGQ algo-
rithm required less memory than other algorithms.

The final analysis to be made is related to the two new proposed al-
gorithms. The FAIETGQ algorithm obtained a better result than FAI-
ETG. The diverging trends in learning shows that the first concepts
learned are important for the FAITEG algorithm. With this result, we
can infer that the manner in which the reinforcement is obtained can
be improved.

8 CONCLUSION AND FUTURE WORKS
In this paper, we presented an ongoing work for the development of
a robotic architecture inspired on Behavior Analysis. Five different
learning algorithms, RL, contingency, ETG, FAIETGQ and FAIETG
algorithm, were incorporated to robotic architecture to provide to the
robot the ability of sharing attention. The learning mechanism were
evaluated on a social interactive simulator and made by interacting
real robotic head and the human in the context of the emergence of
shared attention.

The experimental results show that the FAIETGQ, ETG and RL al-
gorithms presented better performance than the contingency learning
and FAIETG algorithm for shared attention problem. Another result
is that FAIETGQ and FAIETGQ required less memory capacity than

ETG and RL. Further, the results obtained show that the architecture
is a potential tool to control sociable robots.

Future works include some improvements in the reinforcement
generation and the extension of the architecture by implementing
new mechanisms and skills like verbal behavior, emotion, long term
interaction control and learning by imitation.

ACKNOWLEDGEMENTS
The authors would like to thank FAPESP, CNPq and CAPES for sup-
port received.

REFERENCES
[1] Chen Yu A, Dana H. Ballard B, and Richard N. Aslin C. The role of

embodied intention in early lexical acquisition, 2004.
[2] A.C. Catania, Learning, Interim (4th) Edition, Sloan Publishing, 2006.
[3] John O. Cooper, Timothy E. Heron, and William L. Heward, Applied

Behavior Analysis (2nd Edition), Prentice Hall, 2007.
[4] Valerie Corkum and Chris Moore, ‘Origins of joint visual attention in

infants’, Developmental Psychology, 34(1), 28 – 38, (1998).
[5] Renato R. da Silva, Claudio A. Policastro, and Roseli A. F. Romero,

‘Relational reinforcement learning applied to shared attention’, in
IJCNN’09: Proceedings of the 2009 international joint conference on
Neural Networks, pp. 1074–1080, Piscataway, NJ, USA, (2009). IEEE
Press.

[6] Renato R. da Silva, Claudio A. Policastro, Giovana Zuliani, Ednaldo
Pizzolato, and Roseli A. F. Romero, ‘Concept learning by human tute-
lage for social robots’, Learning and Nonlinear Models, 6(4), 44–67,
(2008).

[7] Kurt Driessens, Relational Reinforcement Learning, Ph.D. dissertation,
Katholieke Universiteit Leuven, Maio 2004.

[8] W. Dube, R.P.F. McDonald, R. Mansfield, W.L. Holcomb, and W.H.
Ahearn, ‘Toward a behavioral analisys of joint attention’, The Behavior
Analyst, 27(2), 197−−207, (2004).

[9] S. Haykin, Neural Networks - A Comprehensive Foundation, Prentice
Hall, 1999.

[10] Hyundo Kim, H. Jasso, G. Deak, and J. Triesch, ‘A robotic model of the
development of gaze following’, in Development and Learning, 2008.
ICDL 2008. 7th IEEE International Conference on, pp. 238–243, (aug.
2008).

[11] G. Matsuda and T. Omori, ‘Learning of joint visual attention by re-
inforcement learning’, in Int. Conf. on Cognitive Modeling (ICCM),
(2001).

[12] Andrew N. Meltzoff, Patricia K. Kuhl, Javier Movellan, and Terrence J.
Sejnowski, ‘Foundations for a New Science of Learning’, Science,
325(5938), 284–288, (2009).

[13] Bilge Mutlu, Jessica K Hodgins, and Jodi Forlizzi, ‘A storytelling robot:
Modeling and evaluation of human-like gaze behavior’, in Proceedings
of HUMANOIDS’06, 2006 IEEE-RAS International Conference on Hu-
manoid Robots, pp. 518 – 523. IEEE, (December 2006).

[14] Bilge Mutlu, Toshiyuki Shiwa, Takayuki Kanda, Hiroshi Ishiguro, and
Norihiro Hagita, ‘Footing in human-robot conversations: how robots
might shape participant roles using gaze cues’, in HRI ’09: Proceed-
ings of the 4th ACM/IEEE international conference on Human robot
interaction, pp. 61–68, New York, NY, USA, (2009). ACM.

[15] Y. Nagai, ‘The role of motion information in learning human-robot joint
attention’, in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pp. 2069–2074, (April
2005).

[16] Y. Nagai, A. Hosoda, and M. Asada, ‘A constructive model for the de-
velopment of joint attention’, Connection Science, 15(4), 211−−229,
(2003).

[17] W. David Pierce and Carl D. Cheney, Learning, Interim (4th) Edition,
Psychology Press, 2008.

[18] C.A. Policastro, G. Zuliani, and R.A.F Romero, ‘Robotic architecture
inspired on behavior analysis’, in IEEE International Joint Conference
on Neural Network, Orlando, Florida, USA, pp. 1482−−1487. IEEE,
(2007).

[19] Claudio A. Policastro, Roseli A. F. Romero, Giovana Zuliani, and Ed-
naldo Pizzolato, ‘Learning of shared attention in sociable robotics’, J.
Algorithms, 64(4), 139–151, (2009).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

50



[20] Claudio A. Policastro, Giovana Zuliani, Renato R. da Silva, Vitor R.
Munhoz, and Roseli A. F. Romero, ‘Hybrid knowledge representation
applied to the learning of the shared attention’, in IJCNN, pp. 1579–
1584, (2008).

[21] Claudio Adriano Policastro, Arquitetura rob?tica inspirada na an?lise
do comportamento, Ph.D. dissertation, Universidade de Sao Paulo, Out-
ubro 2008.

[22] Marc Ponsen, Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Kurt
Driessens, ‘Learning with whom to communicate using relational re-
inforcement learning’, in AAMAS ’09: Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems,
pp. 1221–1222, Richland, SC, (2009). International Foundation for Au-
tonomous Agents and Multiagent Systems.

[23] Elizabeth Redcay, David Dodell-Feder, Mark J. Pearrow, Penelope L.
Mavros, Mario Kleiner, John D.E. Gabrieli, and Rebecca Saxe, ‘Live
face-to-face interaction during fmri: A new tool for social cognitive
neuroscience’, NeuroImage, 50(4), 1639 – 1647, (2010).

[24] Brian Scassellati. Mechanisms of shared attention for a humanoid
robot, 1996.

[25] Brian Scassellati, ‘Imitation and mechanisms of joint attention: A de-
velopmental structure for building social skills on a humanoid robot’,
pp. 176–195. Springer-Verlag, (1999).

[26] A.P. Shon, D.B. Grimes, C.L. Baker, M.W. Hoffman, Shengli Zhou,
and R.P.N. Rao, ‘Probabilistic gaze imitation and saliency learning in a
robotic head’, in Robotics and Automation, 2005. ICRA 2005. Proceed-
ings of the 2005 IEEE International Conference on, pp. 2865–2870,
(April 2005).

[27] R. R. Silva, C. A. Policastro, and R. A. F. Romero, ‘An enhancement of
relational reinforcement learning’, in IJCNN, pp. 2055–2060, (2008).

[28] Maria Staudte and Matthew W. Crocker, ‘Visual attention in spo-
ken human-robot interaction’, in HRI ’09: Proceedings of the 4th
ACM/IEEE international conference on Human robot interaction, pp.
77–84, New York, NY, USA, (2009). ACM.

[29] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1998.

[30] Michael Tomasello, Malinda Carpenter, Josep Call, Tanya Behne, and
Henrike Moll, ‘Understanding and sharing intentions: The origins
of cultural cognition’, Behavioral and Brain Sciences, 28, 675–735,
(2005).

[31] Jochen Triesch, Christof Teuscher, Gedeon O. Dek, and Eric Carlson,
‘Gaze following: why (not) learn it?’, Developmental Science, 9(2), 125
– 147, (2006).

[32] C J C H Watkins, Learning from Delayed Rewards, Ph.D. dissertation,
University of Cambridge, 1989.

[33] C. Whalen and L. Schreibman, ‘Joint attention training for children
with autism using behavior modification procedures’, Journal of Child
Psychology and Psychiatry, 44(3), 456−−468, (2003).

[34] Akiko Yamazaki, Keiichi Yamazaki, Yoshinori Kuno, Matthew Bur-
delski, Michie Kawashima, and Hideaki Kuzuoka, ‘Precision timing
in human-robot interaction: coordination of head movement and ut-
terance’, in CHI ’08: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, pp. 131–140, New
York, NY, USA, (2008). ACM.

[35] Chen Yu, Matthias Scheutz, and Paul Schermerhorn, ‘Investigating
multimodal real-time patterns of joint attention in an hri word learn-
ing task’, in HRI ’10: Proceeding of the 5th ACM/IEEE international
conference on Human-robot interaction, pp. 309–316, New York, NY,
USA, (2010). ACM.

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

51



3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

52



Sub-Rationality and Cognitive Driven Cooperation

José Ferreira de Castro1

Abstract. The M-Logic Machine is a proposal for a Unified The-

ory of Cognition [1][2][4][11][12][13] that uses cinematic memories

for learning from scratch in a sensory-motor setting. Its choices are

sub-rational in the sense that they depend on coarse pleasure/pain

evaluations that do not search to maximize expected rewards. This

simple cognitive approach is applied to the Prisoners Dilemma, clar-

ifying the necessary conditions for cooperation.

1 INTRODUCTION

One of the most interesting subjects when we consider autonomous

agents is the emergence of cooperative behaviour. To achieve it, the

importance of evolutionary learning seems obvious. But it is also

obvious that our cognitive abilities play an important part in the

decision to cooperate or defect. In AI a rational agent is often de-

fined as an agent that is able to solve optimization problems, where

some value functions are to be optimized. In a competitive world

with limited resources this often favours the most greedy and self-

ish strategies. Optimization also requires some form of omniscience,

i.e. a complete knowledge of the alternative strategies and their con-

sequences. This short paper presents an original alternative, the M-

LogicMachine (MLM) that does not assume any type of omniscience

and does not seek optimization. It explains how the decision mecha-

nisms of the MLM lead to cooperation under certain conditions that

are in full agreement with our intuition.

2 THE M-LOGIC MACHINE

2.1 Omniscient Machines

Let us first consider a simple decision model where several states

of reality φ1, φ2, φ3...φn arise with a known probability distribution

p1, p2, p3...pn. Confronted with this set of possible states, the agent

can choose among a set of available different actions a1, a2, a3...am

that will ultimately generate a known reward value vij for each spe-

cific state and action. A decision table is thus defined:

Table 1. Omniscient Decision Table

p1 p2 p3 ... pn

φ1 φ2 φ3 ... φn

a1 v11 v12 v13 ... v1n

a2 v21 v22 v23 ... v2n

a3 v31 v32 v33 ... v3n

... ... ... ... ... ...
am vm1 vm2 vm3 ... vmn

1 CENTRIA, Universidade Nova de Lisboa Portugal, email: Castro-
JFGF@gmail.com

The obvious rational strategy is to choose the action a that maxi-
mizes the expected reward, given the known probability distribution

of the states. The learning problem here is to ascertain this omni-

scient decision table. In that table the states are permanent entities

that encompass the past, the present, and the future. If the states re-

sult from a constant environment with known fixed laws of nature,

the permanent probability distribution can in principle be estimated

from a finite time slice. In other words, a stationary process is as-

sumed. But in a multi-agent setting, with changing populations of

agents interacting with each other, the actions taken will feed back

to the temporal probability distribution, often without stable winning

strategies. In that case we are driven to the game theory of iterated

games, further complicated by the fact that the assumption of a sta-

tionary process may no longer be realistic. These issues will be fur-

ther considered in section 3. In any case, an efficient autonomous

machine should learn a good decision table by itself, and learn it fast

enough, because a realistic machine, even dealing with a stationary

process, can only spend a limited amount of energy and has lim-

ited resistance to structural damage. A good enough decision table

must be learned in time to assure the survival of the machine. Any

real machine has also a limited range of sensory abilities that must

cope with noise and irrelevant information. I argue that these types

of constraints are better handled when we replace omniscient states

by small cinematic descriptions of reality, captured by the available

sensors and pre-processed in order to become simple and useful. A

unified theory of cognition, not just some clever learning algorithm,

is required to address the many problems involved in cinematic learn-

ing.

2.2 MLM: A Sub-Rational Machine

The M-logic Machine (MLM) has been developed by the author

since 2001, and its current source code can be found on the authors

homepage (https://sites.google.com/site/josefgfcastro/). The MLM

learns from scratch in a sensory-motor setting, and its basic fea-

tures can be subject to evolutionary learning. We now explain the

rationale behind the MLM architecture and its basic assumptions.

The state of a M-Logic Machine M at time step t is the state of
all its internal memories and sensors, and is noted ΩM (t). In or-
der to build a frugal decision table for a MLM machine evolving

in time, let us consider a list S of short scenes built from the ma-
chine’s measurements, [sp...s3, s2, s1]. In current MLM implemen-
tations, the number of scenes in S is limited to two hundred for long-
term memories. A list of scenes with the most recent scene at the

head of the list and with the remaining scenes placed in chronolog-

ical order is called a tale. Some recording criteria are used to start

or stop recording a new scene into a tale. New scenes are inserted

in the top of the list, and the bottom elements that are pushed be-

yond the size limit are erased. This limiting mechanism is used in all

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

53



the lists of the MLM. We shall call these lists bounded lists. Each

scene s in S is a cinematic record of the measurements performed
by the machine, represented by a list of frames [fq...f3, f2, f1]. The
most recent frame fq is at the head of the list. Each frame in a

scene records a small set of simultaneous measurements. Each differ-

ent possible set is called a sensory mode. In each scene the sensory

mode is kept constant. Sensory modes select only a few of the avail-

able measurements, according to the orienting reflexes of the ma-

chine [9][10]. This limitation to a few measurements is needed for

the MLM to work, and agrees with what happens in natural thought

[3]. Each frame f is represented by a fixed-lenght list of channels
(a vector) [c1, c2, c3...cr]. The sensory mode assigns each selected
measurement to a specific channel. At each time step, the recording

status ρ(ΩM (t)) and the current sensory mode µ(ΩM (t)) tell the
MLM whether to record or not and what to record (and where in the

frames), respectively. We start assuming that all sensory modes in-

clude measurements of the immediate rewards and the actions taken

at each moment. The MLM builds its scenes as sequences of two

micro-steps: first the inner and outside world situation is measured

(this includes the immediate rewards resulting from the previous

steps), leading to an internal choice and triggering of voluntary ac-

tions, and then the immediate actions are measured. This is simi-

lar to what happens in living beings, where muscle contractions are

triggered before they are detected by muscle neurons. The decision

process is not measured. We trigger our voluntary actions before ac-

tually knowing what we triggered. We shall therefore rewrite the

frames in a scene as [(fA/fS)q...(fA/fS)3, (fA/fS)2, (fA/fS)1],
where each fA measures and records the motor actions performed

by the machine after fS measures and records the world situa-

tion and the immediate rewards. This micro-step pattern brings

natural constraints to the pace of frame generation. A scene

[(fS)q...(fA/fS)3, (fA/fS)2, (fA/fS)1] with only fS in its head

in noted s∗. Besides, any scene s may be written as a string of sub-
scenes sasbsc...sk. One natural way to split a recorded scene into

relevant sub-scenes is to anchor one of its frames to the present mo-

ment tp. The generic split sβs∗α is defined as follows: given a frame
anchored to the present-moment (fA/fS)

tp
i , all frames before the

anchored frame are included in s∗α, and all frames past the anchored
frame are included in sβ . The anchored frame (fA/fS)

tp
i is split

in two: fS (the most recent past state) is included in s∗α and fA (the

nearest future instant action) is included in sβ . The nearest future im-

mediate reward is the one found in the frame that follows the nearest

future instant action frame. Let us assume that the scenes obtained

from reality are being recorded and stored in a long-term memory

we call Dominance List Memory (DLM). In other words, DLM is

a bounded list of short scenes [sp...s3, s2, s1] recorded by the ma-
chine as it evolves in its environment. It’s not a tale in the sense that

the listed scenes may be eventually reordered by a dominance pro-

cess. For a given time step t the list of short scenes that are found
in DLM is noted DLM(t). In each DLM only a few measurements
are placed in the frames according to a constant sensory mode µ,
therefore the scenes list will be written DLM(t, µ). My proposal is to
replace the states in the omniscient decision table by sβ sub-scenes

extracted from DLM(t, µ) by an interrogation template I(sβ). Let us
suppose that the machine is currently recording a scene in a short-

term memory STM(tp, µ) that keeps track of the recent past (up to
twenty frames) until the present-time tp. A sub-scene s∗α (up to three
frames) is taken from STM(tp, µ) before an action is triggered, and
then DLM(t, µ) is searched for sub-scenes that match the required
context C(s∗α) associated to the interrogation template I(sβ). The
sβ found are possible continuations for the s∗α scene. Each sβ pro-

vides a sequence of actions starting at tp. We can use the sβs∗α scenes
to replace the φ states in the Omniscient Decision Table. This radi-
cally changes the nature of the decision table, because the sequence

of instant actions to be taken and the corresponding instant rewards

are defined by the sβs∗α scenes that were found in DLM(t, µ). With
this approach, the decision table becomes a Sensory Decision Ta-

ble (see Table 2 hereafter), because all data in the table are simply

what are given by the machine’s sensors, rather than given a priori

by an omniscient intelligence. The Sensory Decision Table no longer

relies on background knowledge that models a certain domain, al-

though it still relies on the machine’s ability to measure immediate

rewards. The uncertainties of the sensors relative to the omniscient

model are not handled by the in-life cinematic reinforcement learn-

ing process. Agents with sensors and orienting responses that are not

good enough for survival will simply extinguish. These aspects will

be handled by evolutionary learning. In the left upper corner of the

Table 2. Sensory Decision Table

DLM(t, µ) p1 p2 p3 ... pn

C(s∗α)I(sβ) s1
β

s2
β

s3
β

... sn
β

a1 u11 ...
a2 u22 ...
a3 u33 ...
... ... ... ... ... ...
am ... umn

Sensory Decision Table are two elements: the source of information

DLM(t, µ) and the context-interrogation query C(s∗α)I(sβ) used to
find the different sub-scenes sβ in DLM(t, µ) that are possible con-
tinuations to s∗α. The number n of recorded continuations will be
in general larger than the number m of the corresponding recorded
action continuations (i.e. n > m). It is true that each si

β defines a

single ui (a utility value calculated from the instant rewards recorded

in si
β) and a single ai (the series of instant actions in si

β). Therefore

for each column there is only one utility value defined. But different

states and utilities may relate to the same measured action sequence

ai, either because the modeled reality is inherently probabilistic, or

due to the imprecision of the measurements. The probability pi of

each continuation si
β can be easily estimated by counting for each i

the number of identical continuations si
β found in DLM(t, µ). The

Sensory Decision Table can therefore be learned on-the-fly by the

machine. It is built as the machine acts on itself and its environment,

first at random, and then using the table to choose the actions with the

best known expected utility. The configuration of the Sensory Deci-

sion Table built at a given time t on a sensory mode µ is noted SDT(t,
µ). Because the DLMs are bounded lists, the size of the correspond-
ing SDTs can actually decrease. If the MLM finds a best ai, the other

continuations in DLM will be eventually pushed to oblivion.

We can choose a single-framed interrogation template I(sβ). This
choice brings up a greedy and short-sighted machine that will not

look for greater rewards beyond immediate losses. Increasing the

number of frames in the I(sβ) template allows an evaluation of the
utility over a longer time span. But it is not possible to know from

the start the final rewards found in the Omniscient Decision Table.

As before, given a Sensory Decision Table SDT(t, µ), a still plau-
sible rational choice is the action that maximizes the known expected

rewards (i.e. those that were already measured and recorded). But

now rationality is clearly bounded by the finite amount of knowl-

edge available to the machine. Its knowledge starts from nothing

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

54



and grows up to a certain DLM size limit that is typically too small

to record all the possible sβ for the possible s∗α. The information
available in the Sensory Decision Table is typically so scarce that

the evaluation of a probability distribution for the si
β can be grossly

misleading: too few instances of each si
β are found in DLM to cor-

rectly evaluate the corresponding pi. Also there can often be a total

lack of information in the Sensory Decision Table for some action

a. This brings the usual dilemmas between exploitation and explo-
ration. Suppose all the known utilities are negative, but the Sensory

Decision Table does not cover all the possible actions. Should the

machine choose the least negative expected value deduced from the

available data, trying to minimize its losses, or should it rather risk

some action not yet performed? Heuristics and meta-learning abili-

ties are needed to address these issues.

Given the limitations of the Sensory Decision Table, the M-Logic

Machine goes a step further. It gives up the idea of evaluating the

probability distribution. Instead, it takes action based on the first

sβ found in the DLM. No decision table is used, just a scan of the

DLM scenes. All scans start from the head of the lists, and stop af-

ter a first match is found. For this solution to work, two things are

required. First, some aspects of sβ must be included in the query

context C (not just s∗α). The context-interrogation query becomes
C(s∗α, sc

β)I(si
β). The split of sβ among the context C and the in-

terrogation I is determined by the current heuristic h. Second, the
DLM must be sorted in such a way that the more accurate predic-

tions are found first. To achieve predictive accuracy, the M-Logic

Machine constantly reorders the DLM list of scenes, pushing down

in the DLM the scenes that offer wrong predictions and pulling up in

the DLM the scenes that offer correct predictions. This is called the

updating dominance mechanism.

The context-interrogation query C(s∗α, sc
β)I(si

β) includes a re-
quired future sc

β . Any subset of the current sensory mode can be

assigned to sc
β , but the most obvious choices are the measurements

related to the current survival needs of the machine, either the ones

that need to be found or the ones that need to be avoided. Smart

orienting reflexes are needed to trigger the adequate sensory modes.

In a sensory-motor setting, the most obvious interrogation is ”what

should be the next action?”. The motor measurements must be in-

cluded in si
β . Finally, the machine must decide what to do each time

the queryC(s∗α, sc
β)I(si

β) is answered. Except for global evaluations
on scenes and lists of scenes, the MLM does not keep statistics on

actions taken and does not calculate utilities. It uses instead a list

of sensory-motor heuristics [h1, h2, h3...hrs], in the spirit of [8], to
target or avoid the measurement results recorded in specific frame

channels of sc
β . Each heuristic defines the type of desired rewards

resulting from the actions performed, and the type of past informa-

tion and future continuations that are searched for a match in the

DLM scenes. What is targeted is called pleasure, and what is avoided

is called pain, and the corresponding frame channels are called the

pain-pleasure channels. In this setting, anything can be pleasure or

pain. But it makes sense, for instance, to assign nociceptors to the

pain channels. The M-Logic Machine works with meaningless literal

data in the frames, and the notions of pleasure and pain are opera-

tional. Roughly speaking, the MLM targets or avoids specific mea-

surements (rewards) instead of evaluating utilities.

This leads to sub-rational choices, meaning sub-optimal rewards

will be considered satisfactory as long as they are tagged pleasant.

Pleasant tags are the tags that the sensory-motor heuristics try to

make reappear in the future. Many frugal and simple heuristics - like

”keep the same action as long as the latest resulting reward is pos-

itive” - are sub-rational in the sense that they do not look for any

reward optimization. But they can make lots of sense in an evolu-

tionary setting with cooperating and defecting agents [6][5]. In those

scenarios survival does not require an optimization, just doing better

than the competition. In the current MLM implementations, heuris-

tics are placed in a list that is subject to an updating dominance mech-

anism that implements meta-learning. For a given situation, the most

accurate heuristics tend to be used to select the most accurate contin-

uations. New heuristics can be generated by new hardwired abilities

or result from in-life exploratory learning.

3 COGNITIVE DRIVEN COOPERATION

3.1 The Paradox of Cooperation

Cooperation is obvious at all levels of the biosphere. Every living

structure displays very complex inter-dependence and cooperation

among its sub-structures. But the selfish competition paradigm is

dominant in Evolution Theory, and cooperation does not arise as a

stable strategy. This paradox of cooperation can be formulated inside

Game Theory. The simplest case is when just two players P1 and

P2 are considered and only two strategies are available to the play-

ers: cooperation C and defection D. Consider a payoff matrix for
the first player and that this payoff matrix is identical for the second

player, as shown in Table 3.

Table 3. Prisoner’s Dilemma Payoff Table

C D

C a b
D c d

The most difficult setting for the establishment of cooperation is

given by the prisoner’s dilemma, where the inequalities c > a >
d > b hold. The difficulties of cooperation can also be found in other
games, but they represent somewhat relaxed situations. To make this

more easily perceived, let us assign specific values to the payoff table,

as shown in Table 4.

Table 4. Prisoner’s Dilemma Payoff Table

C D

C 1 −1
D 2 0

We notice that, if a first player changes from strategy D to strat-

egy C while the second player keeps a D strategy, he will get a lesser

reward. Since the second player uses exactly the same payoff table,

he reaches the same conclusion: while the first player chooses D,

it’s not worth changing from D to C. But, whatever the opponent’s

choice, it is always advantageous to change unilaterally from C to

D. The players will therefore reach an equilibrium point when they

both defect. A combination of the player strategies that cannot be

improved by a unilateral change of strategy by one of the players is

called a Nash Equilibrium. Notice that choosing a Nash equilibrium

appeals to the cognitive abilities of the players. It is assumed that

players are aware of the structure of the game, are consciously at-

tempting to maximize their payoffs, and are attempting to predict the

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

55



moves of their opponents. In addition, it is presumed that all payoffs

and all other cognitive aspects are known by all the players. These

facts are then used to explain why players will choose Nash equilib-

rium strategies. Suppose this same game is iterated many times, with

the players choosing simultaneously their next move without prior

knowledge of each other’s choice. Some fixed strategies that take

into account the past choices of the other player can be envisaged

that will bring a better average payoff than the Nash Equilibrium. A

well known successful strategy is called Tit-for-Tat (TFT): it starts

cooperating, and then it simply replicates the other player’s previ-

ous choice. If both players use a TFT strategy, they will stick to co-

operation. A somewhat different setting is assumed in Evolutionary

Game Theory. Here, it is presumed that the players are individuals

with biologically encoded, heritable strategies. The individuals have

no control over the strategy they play and they are not supposed to

change it driven by some internal cognitive mechanism. They need

not even be aware they are involved in a survival game. During the

game the individuals (associated with fixed strategies) reproduce and

are subject to the forces of natural selection. The payoffs of the game

represent biological fitness that impacts on the reproductive ability of

the individuals. Therefore the proportion (or frequency) of each type

of individuals (and strategies) will change through time. The chang-

ing frequencies will change the total payoff each individual receives

while interacting with all the other players. Therefore the payoff ta-

bles are no longer static, but evolve according to the frequencies.

The evolution of frequencies follows some given Replicator Dynam-

ics. Alternative strategies can be occasionally inserted in the game,

via a process similar to mutation. In order to be an Evolutionary Sta-

ble Strategy, a strategy must be resistant to invasions occasionally

made by a few individuals that bring in mutant strategies. The repli-

cator dynamics are often implemented assuming a constant number

of individuals. At each step, one individual is randomly chosen to

die while another is created, with its associated strategy chosen with

a probability proportional to fitness. Since each individual is asso-

ciated with a single strategy, this may also be seen as the random

change of strategy of a single individual. It is known that any Evolu-

tionary Stable Strategy corresponds to a Nash Equilibrium (with pure

or mixed strategies), but there are some Nash Equilibria that are not

Evolutionary Stable Strategies. Evolutionary Stable Strategies do not

lead to cooperation in a prisoner’s dilemma setting, and yet coopera-

tion is ubiquitous in the living world, hence the paradox of coopera-

tion. Some solutions have been proposed to solve this problem [6][5].

The basic idea is to add some structure to the interactions among in-

dividuals and populations, and allow more complex strategies that go

beyond simple reflex actions. This requires individuals endowed with

higher cognitive abilities. For instance, indirect reciprocity relies on

the good or bad reputation of each individual, implying some form

of social evaluation and symbolic communication.

3.2 Cognitive-Driven Cooperation

The M-Logic Machine does not quite fit in any of the above set-

tings. As we saw in section 2.2, it does not use the fixed payoff ta-

bles needed for classical game theory. Since it does not know the ta-

bles, it cannot calculate beforehand the Nash equilibria. On the other

side, it is not bound to a fixed strategy, or even a random strategy

change according to fitness, as assumed in Evolutionary Game The-

ory. The M-Logic Machine uses instead a set of simple heuristics

that become more or less dominant according to their predictive suc-

cess. In a two-player setting, with the MLMs opponent following a

Tit-For-Tat strategy, the machine will most often tend to cooperate,

as long as the measurement for both players defecting is tagged as

painful and that for both players cooperating is tagged as pleasant.

Noting pain with pn and pleasure with pl, the literal data table for
the prisoner’s is shown in Table 5.

Table 5. Pain-Pleasure Table

C D

C pl pn
D pl pn

The MLMs heuristics will try to promote the occurrence of the pl
tag in the scenes while trying to avoid the occurrence of pn. This is
why pl is called pleasure and pn is called pain. Except for this rela-
tion to specific types of heuristics, pl and pn are meaningless tags.
To strictly respect the c > a > d > b inequalities we could have
used specific heuristics for lots of pleasure and lots of pain and as-

sign pl+ and pn+ tags to these heuristics. But this would not change
the dynamics of the heuristics in the MLM, since the machine does

not give any a priori preference to the heuristics. It is easily seen

that, playing against a Tit-For-Tat strategy, the choice C (cooperate)
will most often succeed when the MLM uses heuristics that search

for pleasure. If the opponent chooses a Always Defect strategy the

MLM will soon find that no heuristic can bring pleasure, and will

oscillate randomly between C (cooperate) andD (defect). Although
this is clearly a sub-rational choice, it makes lots of sense in a world

that is not assumed stationary. Facing constant pain, the MLM just

keeps exploring. This particular configuration of the literal data table

came from the chosen split value between pleasure and pain compat-

ible with the c > a > d > b inequalities. But other compatible split
points can also be considered. Suppose the MLM considers pleasant

the result from both players defecting, as shown in Table 6.

Table 6. Pain-Pleasure Table

C D

C pl pn
D pl pl

Now the MLMs search for pleasure will be most often satisfied

with choice D (defect). The same result is reached when the MLM
only finds pleasure in cheating its opponent, as shown in Table 7.

Table 7. Pain-Pleasure Table

C D

C pn pn
D pl pn

On the other extreme, if the MLM takes pleasure even in the suc-

cess of the defector, we get the configuration shown in Table 8. In

this case, the MLM will tend to reuse any initial random sequence of

choices. This is called superstitious learning [8].

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

56



Table 8. Pain-Pleasure Table

C D

C pl pl
D pl pl

4 FINAL REMARKS

We thus see that reaching stable cooperation with an M-Logic Ma-

chine in a prisoner’s dilemma setting strongly depends on the split

value between pleasure and pain. Only when cooperation is per-

ceived as good and defection is perceived as bad does the MLM tend

to cooperate. In any case, the MLM only sticks to cooperation as

long as the opponent also tends to cooperate. This result agrees with

our intuitive justification for a cognitive-driven cooperation in the

prisoner’s dilemma. The M-Logic Machine’s cognitive mechanism

therefore offers an interesting alternative to the Evolutionary Game

Theory approach.

The M-Logic Machine is somewhat peculiar, in the sense that it

pushes to the limit the avoidance of statistical calculations. Work-

ing mainly with ”literal data” (tags identifying the possible outputs

of measurement instruments), it cannot calculate averages or stan-

dard deviations. Only the mode can be captured by the update dom-

inance processes. The MLM does not calculate state utilities using

rewards, discount rates, learning factors, etc. The idea of rewards

emerges from the machine’s processes. The MLM efficiency relies

on the integration of processes and features that are seldom con-

sidered in mainstream AI: orienting reflexes, sensory modes, frugal

heuristics, clever measurements, etc. Much remains to be done in

these areas, but the current MLM implementation works well enough

to show the approach is worth considering. Although some similar-

ities can be found with Temporal Difference Learning, Q-Learning,
and Instance-Based Learning (all explained in [7]), the MLM ap-

proach only makes sense inside a unified theory of cognition.

REFERENCES

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and
Y. Qin, ‘An integrated theory of the mind.’, Psychol Rev, 111(4), 1036–
1060, (October 2004).

[2] J.F. Lehman, J. Laird, and P. Rosenbloom. A gentle introduction to soar
(2006 update). http://ai.eecs.umich.edu/soar/.

[3] G. A. Miller, ‘The magical number seven plus or minus two: some lim-
its on our capacity for processing information.’, Psychol Rev, 63(2),
81–97, (March 1956).

[4] Allen Newell, Unified theories of cognition, Harvard University Press,
Cambridge, MA, USA, 1990.

[5] M.A. Nowak, C.E. Tranita, and T. Antal, ‘Evolutionary dynamics in
structured populations’, Phil. Trans. R. Soc. B, 365, 19–30, (2010).

[6] Martin A. Nowak, ‘Five rules for the evolution of cooperation’, Science,
314(5805), 1560–1563, (December 2006).

[7] S. Russel and P. Norvig, Artificial Intelligence: a modern approach,
Prentice Hall Series in Artificial Intelligence, New Jersey, 1995.

[8] B. F. Skinner, ‘’superstition’ in the pigeon.’, J Exp Psychol Gen, 121(3),
273–274, (September 1992).

[9] E. Sokolov, ‘The orienting response, and future directions of its de-
velopment’, Integrative Psychological and Behavioral Science, 25(3),
142–150, (July 1990).

[10] N.E. Sokolov, H. Lyytinen, R. Naatanen, and J.A. Spinks, The Ori-
enting Response in Information Processing, Lawrence Erlbaum Asso-
ciates, New Jersey, 2002.

[11] R. Sun, ‘Clarion 5.0 technical report’, Technical report, Cognitive Sci-
ence Department, Rensselaer Polytechnic Institute, (2003).

[12] The Cambridge Handbook of Computational Psychology, ed., R. Sun,
Cambridge University Press, 1st edn., April 2008.

[13] Ron Sun, ‘Theoretical status of computational cognitive modeling’,
Cognitive Systems Research, 10(2), 124–140, (June 2009).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

57



3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

58



A Heuristic Strategy for Learning in Partially Observable
and Non-Markovian Domains

Matteo Leonetti 1 and Subramanian Ramamoorthy 2

Abstract. Robotic applications are characterized by highly dy-
namic domains, where the agent has neither full control of the en-
vironment nor full observability. In those cases a Markovian model
of the domain, able to capture all the aspects that the agent might
need to predict, is generally not available or excessively complex.
Moreover, robots pose relevant constraints on the amount of expe-
rience they can afford, moving the focus of learning their behavior
from reaching optimality in the limit, to making the best use of the
little information available. We consider the problem of finding the
best deterministic policy in a Non-Markovian Decision Process, with
a special attention to the sample complexity and the transitional be-
havior before such a policy is reached. We would like robotic agents
to learn in real time while being deployed in the environment, and
their behavior to be acceptable even while learning.

1 Introduction

Robotic applications are characterized by highly dynamic domains,
where the agent has neither full control of the environment nor full
observability. In those cases a Markovian model of the domain, able
to capture all the aspects that the agent might need to predict, is gen-
erally not available or excessively complex. A very general frame-
work to face such problems is the one of Partially Observable MDP
(POMDP) [2].

While most of the methods to solve POMDPs attempt some state
estimation, we follow the previous work in the literature about
learning with hidden states [6, 5, 4] (which make the system Non-
Markovian in general), and focus on a different aspect of the learning
process. In Reinforcement Learning (RL) optimality is usually the
main target, but robotic applications pose relevant constraints on the
number of experiments that the agent can afford (in terms of time,
or other resources). We, therefore, believe that the focus should be
moved from proving optimality in the limit, to obtaining the best
possible behavior with the little information available, and gathering
this information carefully.

We consider the problem of finding the best deterministic policy
in a Non-Markovian Decision Process, with a special attention to
the sample complexity and the transitional behavior before such a
policy is reached. We would like robotic agents to learn in real time
while being deployed in the environment, and their behavior to be
acceptable even while learning. To this aim, we propose an algorithm
structured in two phases: the first one, as short as possible unless
simulated, provides an exploratory behavior that gathers information
on the effect of actions.The second phase starts exploiting the data

1 Department of Computer and System Sciences, Sapienza University of
Rome

2 School of Informatics, The University of Edinburgh

collected during the first phase making small exploratory steps and
traversing the policies that look more promising on the basis of the
collected data.

As an example, consider the domain of robotic soccer, in which
multiple agents interact in both a cooperative and a competitive way,
making the environment extremely dynamic and unpredictable from
a single-agent perspective. Moreover, in applications such as the one
just mentioned, the number of actions available at any time is consid-
erable, making the branching factor of the policies an issue. Nonethe-
less, the actions actually meaningful in most of the situations are few.
A robot should ideally be able to realize quickly that, for instance,
just staring at the ball is not going to take it in any farther, no mat-
ter what other actions he could do later, and independently from all
the other many aspects of the world. The method we propose aims at
identifying those “wrong” actions and avoiding them unless proved
necessary.

We provide a preliminary evaluation on a common test-bed in the
literature of NMDP that allows us to easily compare our algorithm
with the best results obtained so far.

2 Problem formulation

We consider NMDPs with a finite set of states S and a finite set
of actions A, with similar assumptions regarding observations as in
POMDPs. A deterministic policy π on the NMDP maps each state
s ∈ S to an action a ∈ A(s) among those available in s. In the fol-
lowing, we borrow the notation from Perkins [5] indicating with τ =
{s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT } a trajectory in the NMDP. A
policy determines a well defined probability measure, µ(π), over the
set of all possible trajectories. The reward corresponding to each tra-
jectory is a random variable defined as R(τ) =

∑T

t=0
γtrt where

γ ∈ [0, 1] is the discount factor. We define the value of a policy as
the expected discounted reward:

V π = Eτ∼µ(π){R(τ)} = Eπ{R(τ)}

The tasks are episodic, which means that they terminate under any
policy with probability one. We limit ourselves to the search for
the best deterministic policy, although in NMDPs the optimal pol-
icy might be stochastic [6]. We also adopt Perkins’s [5] definition
of the action-value function that we report in the following. Given
a trajectory τ , the portion of R(τ) preceding a state s is denoted as
Rpre−s(τ). Similarly, the portion of R(τ) following a state s is de-
noted as Rpost−s(τ). For any state s the value of a policy can be
rewritten as

V π = Eπ[R(τ)]
= Eπ[Rpre−s(τ)] + Eπ[Rpost−s(τ)]

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

59



Let π ← (s, a) represent the policy that is identical to π except for
the state s that is mapped to the action a. We define the action-value
function for a pair 〈s, a〉 as:

Qπ(s, a) = Eπ←(s,a)[Rpost−s(τ)] (1)

We refer to the original paper for an explanation of the differences
with the traditional definition. We only point out that if an action a is
chosen for a state s, then every time s is encountered the agent will
execute a, according to π ← (s, a).

In the following, we present an algorithm for maximizing Qπs,a
making use of a particular initial exploration phase to collect heuris-
tic information on the most promising policies to be subsequently
exploited.

3 Parr and Russell’s Grid World
Before proceeding with the description of the algorithm, we intro-
duce the test domain: Parr and Russell’s Grid World [3]. Grid World
has been used as a test domain in several papers [3, 1, 5] and pro-
vides a simple and structured environment with a reasonable branch-
ing factor. It has 11 states (figure 1) in a 4 by 3 grid with one obstacle.
The agent starts at the bottom left corner. There is a target state and

Figure 1. Grid World

a penalty state whose rewards are +1 and -1 respectively. Both are
absorbing states, that is when the agent enters them the episode ter-
minates. The actions available in every state are move north, move
south, move east, and move west which succeed with probability 0.8.
With probability 0.1 the agent moves in one of the directions orthog-
onal to the desired one. In all of the previous cases if the movement
is prevented by an obstacle the agent stays put. In any state the agent
can only observe the squares east and west of it, having a total of four
possible observations. Those observations are going to form the state
space of an NMDP whose controller we are going to learn.

4 The algorithm: εMaCs
The main idea of the algorithm lies on the intuition that often a few
bad choices disrupt the value of all the policies that include them.
For instance, consider the initial state in Grid World. Any of the 128
policies out of the 256 total ones that map the initial observation to
either move west or move south have no chance to be optimal. Taking
those policies as if they were as valuable as any other, in the search
for the optimal policy, just wastes samples. We would rather like to
realize that those actions are not promising and not consider them
unless we have tried all the other possibilities.

The strategy would ideally consider all the policies from the most
promising to the least ones, which we believe is beneficial in at least
two ways: (1) the algorithm reaches the optimal policy earlier; (2)

during the phase of evaluation of those promising but suboptimal
policies, the behavior is as good as the current information allows.

The algorithm is constituted by two parts: the exploratory phase
and the assessing phase.

Algorithm 1 εMaCs
exp length← number of episodes in the exploratory phase
ε← probability of exploration in the assessing phase
α← learning step parameter
initialize Q(s, a) pessimistically
{Exploratory phase}
for i = 1 to exp length do

generate a trajectory τ according to a policy π extracted uni-
formly at random
for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
Q(s, a) = max(Q(s, a), Rpost−s(τ))

end for
end for
{Assessing phase}
for all other episodes do
v ← a value in [0, 1] uniformly at random
if v ≥ ε then
π′ ← the policy that greedily maximizes Q

else
π′ ← a policy chosen uniformly at random

end if
generate a trajectory τ from π′

if v ≥ ε then
for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
Q(s, a) = (1− α)Q(s, a) + αRpost−s(τ)

end for
else

for all s ∈ S, a ∈ A s.t.〈s, a〉 is in τ do
q = (1− α)Q(s, a) + αRpost−s(τ)
Q(s, a) = max(Q(s, a), q)

end for
end if

end for

4.1 Exploration: gathering information
The exploration initializes the Q-function to drive the execution in
the subsequent phase. For a number of episodes exp length the
agent chooses a policy at random, and in each pair 〈s, a〉 stores the
highest value that any policy, going through 〈s, a〉, has obtained until
then. Consider the simple example of the NMDP in figure 2(a). This
NMDP has three states and four actions with a total of four poli-
cies. Let the reward returned by each of those policies be normally
distributed, with means and standard deviations represented in figure
2(b). Figure 2(c) and 2(d) show the value of the Q-function for each
action during a particular run. The first 100 episodes belong to the
exploratory phase, in which A1 and A2 obtain the highest reward,
making the policy A1-A2 look particularly promising. An action is
considered as promising as the highest value of the reward that choos-
ing that action has ever given. In the case of A1-A2, its good result
is due to the high variance, rather than the highest mean. This aspect
is going to be addressed by the second phase of the algorithm.

Several other choices are possible both for the exploration (uni-
formly at random) and for the value stored (the maximum); for in-
stance, making use of SoftMax we might give a higher priority to the

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

60



(a) (b) (c) (d)

Figure 2. A simple example of an NMDP (a). The four policies return a reward normally distributed whose means and standard deviations are shown in (b).
The evolution of the Q-function for the first state (actions A1 and B1) is represented in figure (c), while for the second state (actions A2 and B2) is represented

in figure (d).

policies that returned a higher reward. In future work, we will con-
sider relying on further statistics about the policies traversing a given
choice point.

4.2 Assessment
We want to maximize the expected cumulative discounted reward,
rather than the maximum obtainable one, therefore an evaluation of
the promising policies is needed.

In the second phase the agent acts greedily according to the Q-
function previously constructed. It starts from the policy that has
given the highest reward and, taking subsequent samples from it,
lowers its value until it reaches the expected value. The value of the
current policy, in this process, could get lower than the maximum
value obtained by some other policy, and stored in one of its actions.
In this case, the two policies would be alternately chosen and would
race each other down toward their respective expected values, stop-
ping at the highest one. An example of this behavior is shown in
figure 2(d). Starting from the episode 101, the policy A1-A2 is greed-
ily executed. Since its mean is considerably lower than the value
stored, the estimate keeps dropping until it reaches the value pre-
viously stored for B2. At this point, A1-A2 and A1-B2 are executed
almost alternately, each one pushing down its estimate toward their
respective mean. The learning rate parameter determines the speed
with witch the estimates tend to the means. The higher the learning
rate, the faster the estimate will reach the mean, but also, the more
it oscillates confusing policies close to each other. At some point,
A1-B2 reaches its mean and stabilizes, so that the value of A1 is the
same for both the policies, but B2 is definitely higher than A2, mak-
ing A1-B2 the learned policy which is also the optimal one. Notice
how in this process B1 has never been executed. This is because the
highest value it had given in the first phase has always been lower
than the current estimates of the policies taken into account during
the assessing phase.

If the maximum value obtained by the optimal policy has been
stored in one of the state-action pairs, this algorithm quickly con-
verges to the optimal policy. Unfortunately, this might not happen
for two reasons: (1) the optimal policy might have, in all of its states,
another policy (not the same for every state) that shares the same
action in that state and differs elsewhere, but gives a higher maxi-
mum reward. In this case the maximum reward obtained by the op-
timal policy in the first phase would be hidden by those policies. (2)
The optimal policy has never been sampled above the expected re-
ward, and no optimistic estimate of it has had a chance to be stored.
Ideally, in the first phase, every policy should be sampled above its
expected value at least once. The number of episodes necessary to

meet this condition would probably be impractically high for most
domains. For this reason, and since the first point wouldn’t be avoid-
able anyway, we add a step of exploration in the second phase too,
that guarantees that each policy is continually sampled on the long
term. When the agent takes an exploratory step (with probability ε)
the Q-function is updated only in those state-action pairs that gave a
value higher than the current one.

Clearly taking an exploratory step could disrupt the optimal policy
if this had already been found. The racing among the two policies
would have to happen again until the optimal policy is established
once more. This cannot be prevented if we want to make sure that
the optimal policy has always a chance to be sampled.

5 Experimental evaluation
We conducted a preliminary evaluation of our algorithm on Grid
World, in order to show how the different parameters impact the be-
havior of the agent. Every 20 episodes for the short term experiments,
and every 100 episodes for the long term ones, we pause the learn-
ing and evaluate the current controller for 20 episodes. The results
are averaged over 200 runs. By “evaluating the controller” we mean
that, during the evaluation, the behavior of the agent is the same as
if it were learning, but the Q-function is left unchanged. Thus, if at
a specific point the agent would choose a policy at random, the re-
ward obtained will be the average of the reward returned following
20 policies picked uniformly at random. Notice that choosing a pol-
icy at random, in this context, is different from following the random
policy. In the former case the same decision is always made in the
same state, while in the latter case each time a state is hit a random
choice is made.

We compare our results with two control strategies: Sarsa(λ) with
ε-greedy exploration, and Sarsa(λ) with optimistic initialization. The
latter strategy consists in initializing the Q-function at an optimistic
value for each state-action pair, and exploiting the current estimate at
any time. We borrowed a few parameters from the literature [1, 5] and
spent some time optimizing others. When not differently specified
the Q-function has been initialized at -4. The best behavior we could
achieve for ε-greedy was with ε starting at 0.2 and linearly decaying
to 0 in 80000 actions. For the optimistic initialization, the Q-function
has been initialized at 1. In both cases α = 0.01 and λ = 0.9

Figure 3 shows the cumulative rewards obtained by different con-
trollers. εMaCs here has been evaluated without any exploration in its
second phase. Sarsa(0.9) with optimistic initialization reliably con-
verges to the optimal policy a lot faster than ε-greedy. It is this be-
havior that we want to improve, pruning some of the exploration by
getting a more realistic initialization. With an initial phase of 100

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

61



Figure 3. Cumulative reward on the short term for different controllers.
εMaCs is evaluated without any exploration in the second phase.

episodes and α = 0.01, εMaCs always converges to the optimal
policy shortly after the initial exploration. We also evaluated the be-
havior of the agent with 50 episodes, in order to understand the con-
sequences of little initial sampling. In case the agent could not afford
a longer initial phase, we would like that it still quickly converged to
a “good” policy, if not the optimal one. Indeed, after 50 episodes the
average reward stabilizes at around 0.1, while the optimum is around
0.25. Considering that most of the policies give a reward of -4 and
that the average reward obtained is non-decreasing, this can be prob-
ably considered a good result.

Figure 4. Cumulative reward on the long term allowing exploration in the
second phase of εMaCs

In the second set of experiments we tried to establish whether, by
allowing some exploration also on the second phase, it is eventually
possible to reach the optimal policy even from a short initial phase.
Clearly exploration is a double-edged sword: on the one hand it al-
lows to discover the optimal policy, on the other hand it worsen the
average behavior of the agent that leaves its current “good” policy.
Figure 4 shows the results for two different settings, compared with
Sarsa(λ) and εMaCs after 100 initial episodes as already described.
In one setting we let ε start at 0.2 and reach 0.01 in 5000 episodes, re-
maining constant afterwords. In the other setting ε started at 0.1. The
two results fall in between Sarsa and the optimum obtained with 100
initial episodes. Moreover, the increase in the performance is linear
and follows perfectly the decay of ε. This probably means that the
optimal policy is identified early and, from that point on, the explo-
ration is the only responsible for the sub-optimal behavior. We have
not performed an extensive evaluation over the possible values for
the initial ε and its decaying rate, therefore we cannot state exactly

how close the behavior can be pushed towards the optimal line above
by varying these two values. It seems reasonable though, that the lin-
ear dependence allows for a faster convergence up to a point when
the exploration becomes too short, and we fall into the initial case of
figure 3 with no exploration at all.

6 Conclusion
We devised an algorithm to learn the best deterministic policy in an
NMDP searching the policy space in a favorable order. The algorithm
first attempts to collect information about the actions’ values and then
exploits it preventing the agent from behaving arbitrarily bad, possi-
bly allowing its early deployment in the environment. Several future
directions can be followed in making this simple algorithm more ef-
ficient in the exploration, directing the search even in the first phase
rather than acting randomly. We believe that novel and more efficient
techniques on NMDPs can help to the simplifications of robots’ con-
trollers and the scalability of RL in practical applications.

REFERENCES
[1] J. Loch and S. Singh, ‘Using eligibility traces to find the best memoryless

policy in partially observable Markov decision processes’, in Proceed-
ings of the Fifteenth International Conference on Machine Learning, pp.
323–331. Citeseer, (1998).

[2] G.E. Monahan, ‘A survey of partially observable Markov decision pro-
cesses: Theory, models, and algorithms’, Management Science, 28(1),
1–16, (1982).

[3] R. Parr and S. Russell, ‘Approximating optimal policies for partially ob-
servable stochastic domains’, in Ineternational Joint Conference on Ar-
tificial Intelligence, volume 14, pp. 1088–1095. Citeseer, (1995).

[4] Mark D. Pendrith and Michael McGarity, ‘An analysis of direct rein-
forcement learning in non-markovian domains.’, in ICML, ed., Jude W.
Shavlik, pp. 421–429. Morgan Kaufmann, (1998).

[5] T.J. Perkins, ‘Reinforcement learning for POMDPs based on action val-
ues and stochastic optimization’, in Proceeding of the national con-
ference on artificial intelligence, pp. 199–204. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, (2002).

[6] S.P. Singh, T. Jaakkola, and M.I. Jordan, ‘Learning without state-
estimation in partially observable Markovian decision processes’, in Pro-
ceedings of the eleventh international conference on machine learning,
pp. 284–292. Citeseer, (1994).

3rd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2010)
Lisboa, Portugal, August 16 2010

62


