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A Message from the Chairs

Welcome to the 2nd International Workshop on Evolutionary and Reinforcement Learning for 
Autonomous Robot Systems, ERLARS 2009, held in conjunction with the IROS 2009 conference 
in St. Louis, Missouri, USA on October 15 2009.

The ERLARS workshop is concerned with research on efficient algorithms for evolutionary and 
reinforcement learning methods to make them more suitable for autonomous robot systems. 
The long term goal is to develop methods that enable robot systems to learn completely, dir
ectly  and continuously through interaction with the environment.   In order to achieve this, 
methods are examined that can make the search for suitable robot control strategies more 
feasible for situations in which only few measurements about the environment can be obtained.

The articles that you will find in these proceedings are steps along this way.  We hope that they 
can serve as a useful set of ideas and methods to achieve the long term research goal.

We would like to thank the program committee members who provided very good reviews in a 
short period of time.  We are also especially indebted to the authors of the articles sent to this 
workshop for providing the material to make us think and discuss.

It has been a great pleasure organising this event and we are happy to be supported by such a 
strong team of researchers.  We sincerely hope that you enjoy the workshop and we look for
ward, with your help, to continue building a strong community around this event in the future.

Nils T Siebel and Josef Pauli, Chairs, ERLARS 2009 Workshop.
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Combining Central Pattern Generators with the Electromagnetism-like
Algor ithm for Head Motion Stabili zation dur ing

Quadruped Robot Locomotion

Cristina P. Santos, Miguel Oliveira, Vitor Matos, Ana Maria A.C. Rocha and Lino Costa

Abstract— Visually-guided locomotion is important for au-
tonomous robotics. However, there are several difficulties,
for instance, the head shaking that results from the robot
locomotion itself that constraints stable image acquisition and
the possibili ty to rely on that information to act accordingly.

In this ar ticle, we propose a controller architecture that is
able to generate locomotion for a quadruped robot and to
generate head motion able to minimizethe head motion induced
by locomotion itself. The movement controllers are biologically
inspired in the concept of Central Pattern Generators (CPGs).
CPGs are modelled based on nonlinear dynamical systems,
coupled Hopf oscill ators. This approach allows to explicitly
specify parameters such as ampli tude, offset and frequency of
movement and to smoothly modulate the generated oscill ations
according to changes in these parameters. We take advantage
of this par ticular ity and propose a combined approach to
generate head movement stabili zation on a quadruped robot,
using CPGs and a global optimization algor ithm. The best set
of parameters that generates the head movement are computed
by the electromagnetism-like algor ithm in order to reduce the
head shaking caused by locomotion.

Experimental resultson a simulated AIBO robot demonstrate
that the proposed approach generates head movement that does
not eliminate but reduces the one induced by locomotion.

I . INTRODUCTION

Robot locomotion is a challenging task that involves
several relevant subtasks, not yet completely solved. The
motion of quadruped, biped and snake-like robots, for in-
stance, with cameras mounted in their heads, causes head
shaking.This kind of disturbances, generated by locomotion
itself, makes it difficult to keep the visual frame stable and,
therefore, to act according to the visual information. Head
stabili zation isvery important for achievingavisually-guided
locomotion, a concept which has been suggested from a
considerable number of neuroscientific findings in humans
and animals [18].

As a basic research to realize visually-guided quadruped
locomotion, we aim in this article at head stabili zation of
a quadruped robot that walks with a walking gait. In our
research, we propose a motion stabili zation system of an
ers-7 AIBO quadruped robot, which performs its own head
motion according to a feedforward controller. Several similar
works have been proposed in literature [4], [7], [6], [5].

Cristina Santos, Miguel Oliveira and Vitor Matos are with Industrial
Electronics Department, School of Engineering, University of Minho,
4800-058 Guimaraes, Portugal cristina@dei.uminho.pt,
mcampos@dei.uminho.pt, vmatos@dei.uminho.pt

Ana Rocha and Lino Costa are with Production Systems Department,
School of Engineering, University of Minho, 4710-057 Braga, Portugal
arocha@dps.uminho.pt, lac@dps.uminho.pt

But these methods consider that the robot moves according
to a scheduled robot motion plan, which imply that space
and time constraints on robot motion must be known before
hand as well as robot and environment models. As such,
control is based on this scheduled plan. Other works have
successfully achieved gazestabili zation [5], that consists on
image stabili zation during head movements in space. The
overall of the gazestabili zation approaches can be divided
into two types of techniques. One uses specific hardware,
like accelerometersand gyroscopeto estimate the3D posture
of the head, and complex control algorithms to compensate
the oscill ations. The use of inertial information was already
proposed by several authors [5], [16], [17]. Typically this
kind of techniques is used in binocular robot heads, where
gazeis implemented throughthe coordination of the two eye
movements. Most of the approachesare inspired in biological
systems, specifically in the human Vestibular-Ocular Reflex
(VOR). In robotswith fixed eyes, thefixation point procedure
isachieved bycompensatory head or bodymovements, based
on multisensory information of the head.

In this work, a combined approach to generate head
movement stabili zation ona quadruped robot, using Central
Pattern Generators (CPGs) and the electromagnetism-like
algorithm is proposed. We intend to use a head controller,
based on Central Pattern Generators (CPGs), that generates
trajectories for tilt , pan and nod head joints. CPGs are neural
networks located in the spine of vertebrates, able to generate
coordinated rhythmic movements, namely locomotion [11].
These CPGs are modelled as coupled oscill ators and solved
using numeric integration. These CPGs have been applied in
drumming [1] and postural control [3]. This dynamical sys-
tems approach model for CPGs presents multiple interesting
properties, including: low computation cost which is well -
suited for real time; robustness against small perturbations;
thesmooth onlinemodulation of trajectories throughchanges
in the dynamical systems parameters and phase-locking
between the different oscill ators for different DOFs.

In order to achieve the desired head movement, opposed
to the one induced by locomotion, it is necessary to ap-
propriately tune the CPG parameters. This can be achieved
by optimizing the CPG parameters using an optimization
method. The optimization process is done offline according
to the head movement induced by the locomotion when no
stabili zation procedure was performed.

Some algorithms for solving this type of problem require
substantial gradient information and aim to improve the
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solution in a neighborhood of a given initial approximation.
When the problem hasmore than one local solution, the con-
vergence to the global solution may depend onthe provided
initial approximation. Thus, searching for a global optimum
is a difficult task that could be done by using stochastic-
type algorithms. The stochastic methods can be classified
in two main categories, namely, the point-to-point search
strategies and the population-based search techniques. From
the population-based techniques, we would like to emphasize
three particular algorithms, the electromagnetism-like algo-
rithm (EM) [12], the particle swarm optimization [13] and
genetic algorithms (GA) [2] that despite employing different
strategies, they are easy to implement and computationally
inexpensivein termsof memory requirement. TheGA iswell
suited and hasalready been applied to solve thisoptimization
problem because it can handle both discrete and continuous
variables, nonlinear objective andconstrain functionswithout
requiring gradient information [14]. Recently, EM algorithm
appeared as a promising algorithm for handling optimization
problems with simple bounds. This technique is finding
popularity within research community as design tools and
problem solvers because of their versatilit y and abilit y to
optimize in complex multimodal search spaces applied to
nondifferentiable objective functions [15]. In this paper, we
are interested in the application of the EM algorithm, pro-
posed in [12], to optimizethe CPG parameters of amplitude,
offset and frequency of each head oscill ator to head motion
stabili zation during quadruped robot locomotion.

The remainder of this paper is organized as follows. In
Section II , the system architecture and how to generate
locomotionand head movement is described. The main ideas
concerning the optimization system, namely the problem
statement that evaluates the head movement, the EM mecha-
nism to optimizethe CPG parametersandsome experimental
results, are described in Section III . Simulated results are
described in Section IV. Conclusions are made in Section V.

II . SYSTEM ARCHITECTURE

Our aim is to propose a control architecture that is able to
generate locomotion for a quadruped robot and to generate
head motionsuch as to minimizethehead movement induced
by the the locomotion itself.

The overall system architecture is depicted in Figure 1.

Fig. 1. Overall system architecture

The proposed movement controllers are biologically in-
spired in the concept of CPGs. A locomotion controller

generates hip and knee trajectories. A head controller spec-
ifies the planned neck tilt , pan and nodjoint values. These
trajectories are used as input for the PID controllers of these
joints.

The head controller parameters have to be tuned such
that the resultant movement is as desired. Using our CPG
approach allows us to assign explicit parameters for each
of the nonlinear oscill ators, independently controlli ng the
amplitude, offset and frequency of themovement. We apply a
stochastic optimization method, the EM algorithm, in order
to determine the best set of CPG control parameters that
results in, or close to the desired movement. This set of
parameters constitute the Model module in Fig. 1.

A. Locomotion Generation

In this section we present the network of CPGs used to
generate locomotion. A CPG for a given degree-of-freedom
(DOF) is modelled as coupled Hopf oscill ators, that generate
a rhythmic movement.

1) Rhythmic Movement Generation: Rhythmic move-
ments are generated by the following Hopf oscill ator

ẋi = β
(

µi − r2
i

)

(xi −Oi)−ωzi, (1)

żi = β
(

µi − r2
i

)

zi + ω (xi −Oi) , (2)

where r i =
√

(xi −Oi)
2 +z2

i , ω specifies the oscill ations

frequency (in rad s−1), peak-to-peak amplitude of the os-
cill ations are given by Ai = 2

√µi and relaxation to the limit
cycle is given by 1

2β µi
.

This Hopf oscill ator contains a bifurcation from a stable
fixed point at xi = Oi (when µi < 0) to a structurally stable,
harmonic limit cycle, for µi > 0. The fixed point xi has an
offset given by Oi .

Thus, this Hopf oscill ator exhibits limit cycle behaviour
and describes a stable rhythmic motion where parameters
Ai , ω and Oi control the desired amplitude, frequency and
offset of the resultant oscill ations.

2) Locomotion Controller Architecture: We have to cou-
ple the oscill ators in order to ensure phase-locked synchro-
nization between the hip and knee DOFs of the robot, and
generate locomotion with a desired gait.

Fig. 2 depicts the network structure used to generate
locomotion for a quadruped robot. Hopf oscill ators of the

Fig. 2. Locomotion controller architecture depicting coupling structure
among the CPGs for a walking gait. The footfall sequence is: HL-FL-HR-
FR, with each foot lagging a quarter of a cycle from the previous.

hips are bilaterally coupled, these couplings being ill ustrated
by right-left arrows, and hip Hopf oscill ators are unilaterally
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coupled to the corresponding kneeHopf oscill ators. For the
hip joints, this is achieved by modifying (1) and (2) as
follows:

[

ẋi[1]

żi[1]

]

=
[

β µi ω
−ω β µ i

][

xi[1] −Oi[1]

zi[1]

]

−β r2
i[1]

[

xi[1] −Oi[1]

zi[1]

]

+ ∑
j 6=i

R(θ j[1]
i[1]

)
[

xj[1]−Oj[1]

zj[1]

]

For the kneejoints, we modify (1) and (2) as follows:
[

ẋi[3]

żi[3]

]

=
[

β µ i ω
−ω β µ i

][

xi[3]−Oi[3]

zi[3]

]

−β r2
i[3]

[

xi[3]−Oi[3]

zi[3]

]

+
1
2

R(ψ j[1]
i[3]

)
[

xj[1]−Oj[1]

zj[1]

]

where r i [k] is the norm of vector (xi[k]−Oi[k],zi [k])T (k =
1,3, that is hip and knee joints) and i, j = Fore Left (FL),
Fore Right (FR), Hind Left (HL) and Hind Right (HR)
limbs. The linear terms are rotated onto each other by the
rotation matrices R(θ j[1]

i[1]
) and R(ψ j[1]

i[3]
), where θ j[1]

i[1]
is the

relative phase among the i[1]’s and j[1]’s hip oscill ators and
represents bidirectional couplings between these oscill ators
such that θ j[1]

i[1]
=−θ i[1]

j[1]
and ψ j[1]

i[3]
is the required relativephase

amongthe i[3]’s and j[1]’s oscill ators (seeFig. 2). We assure
that closed-loop interoscill ator couplings have phase biases
that sum to a multiple of 2 π .

Each hip oscill ator lags a quarter of a cycle from the
previous. The relative phases between hips and knees, ψ j[1]

i[3]
,

were all set to 180.
Due to thepropertiesof these coupled Hopf oscill ators, the

generated trajectoriesare always smooth and thus potentially
useful for trajectory generation in a robot.

This network structure constitutes the locomotion con-
troller that generates desired trajectories, xi , obtained by
integrating the CPGs dynamical systems. These are sent
online for the PID controllers of each hip and knee joints
and result in the actual trajectories x̃i .

3) Generating a walking gait: A gait event sequence is
specified using theduty factorsandthe relativephases, where
the first event, and the start of the stride, is chosen as the
event when the fore left leg (reference leg) is set down. We
have set a non-singular, regular and symmetric gait with a
FL-HR-FR-HL gait even sequence {ϕFL, ϕHR, ψFR, ψHL,
ϕFR, ϕHL, ψFL, ψHR}), a duty factor of 0.73 and a velocity
of 19mms−1 (measured in the Z direction, seeFig. 3).

We have implemented in webots [8] this locomotion
controller (simulation results and the experiment description
is detailed explained in section).

B. Head Movement Generation

Head movement is generated similarly to locomotion, but
a CPG for a given DOF is modelled as an Hopf oscill ator,
not coupled to any other oscill ator. Each CPG, therefore,
generates a rhythmic movement according to

[

ẋi

żi

]

=

[

β µi ω
−ω β µ i

][

xi −Oi

zi

]

−β r2
i

[

xi −Oi

zi

]

, (3)

where i =tilt ,pan,nod.

The control policy is the xi variable, obtained by integrat-
ing the CPGs dynamical systems, and represents tilt , pan and
nod joint angles in our experiments. These are sent online
for the corresponding PID controllers.

Note that the final movement for each of these joints is a
rhythmic motion which amplitude of movement is specified
by µi , offset by Oi and its frequency by ω .

The differential equations for locomotion and head move-
ment aresolved usingEuler integrationwith afixed timestep
of 1ms. Thexi trajectoriesrepresent angular positionsandare
directly sent to the PID controllers of the joint servomotors.

III . OPTIMIZATION SYSTEM

In this section, we explain how the head CPGs are
optimized in order to reduce the camera (head) movement
induced by locomotion itself. We will optimize the distance
between the generated head movement for a set of head CPG
control parameters and the one induced by locomotion.

In order to implement the head motion it is necessary
one or several optimal combinationsof amplitude, offset and
frequency of each head oscill ator. This is possible because
we can easily modulate amplitude, offset and frequency of
the generated trajectories according to changes in the Ai ,
Oi and ω CPG parameters and these are represented in an
explicit way by our CPG. Therefore, we have to tune the
head CPG parameters: amplitude Ai , offset Oi and common
frequency ω . In order to optimize the combinations of the
different head CPG control parameters the EM algorithm is
used.

The multitude of parameter combinations is large, and it is
difficult to derive an accurate model for the tested quadruped
robot and for the environment. Besides, such a model based
approach would also require some post-adaptation of results
(because of backlash, friction, etc).

In this study, the search of parameters suitable for the
implementation of the required head motion was carried
out based on the data from a simulated quadruped robot.
The (X,Y,Z) head coordinates, in a world coordinate system
(Fig. 3), are recorded when a simulated robot walks during
30s and no head stabili zation is performed. We are interested
in the oppositeof this movement aroundthe (X,Y,Z) coordi-
nates. This data was mathematically treated such as to keep
only the oscill ations in the movement and remove the drift
that the robot has in the X coordinate and also the forward
movement in the Z coordinate. From now on, this data is
referred to as (X,Y,Z)observed.

In thesimulation, wehaveset a cycle timeof 30ms, that is,
the timeneeded to perform sensory acquisitions, calculate the
planned trajectories (integrating the differential equations)
and send this data to the servomotors. The (X,Y,Z)observed

data is sampled with a sample time of 30ms, meaning we
have atotal of 1000samples. A simulated time of 30s corre-
sponds to 10strides of locomotion. This time is arbitrary and
could have been chosen differently but seems well suited to
find a model representative of the head movement induced
by the locomotion controller.
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Fig. 3. World coordinate system.

The basic idea is to combine the CPG model for head
movement generationwith the optimizationalgorithm. Fig. 4
ill ustrates a schematics of the overall optimization system.

Fig. 4. Schematics of the optimization system.

Three head CPGs (3) generate during 30s rhythmic mo-
tions for the tilt , pan and nod joints. By applying forward
kinematics, we calculate the resultant set of 1000 samples
of (X,Y,Z)calculated head coordinates in the world coordinate
system.

A. Problem Definition

The sum of the distances between each sample of the
observed and calculated head coordinates is used as fitness
function in order to evaluate the resulting head movement.
Thus, the fitnessof the ith point is given by

fi =
n

∑
j=1

√

(

Xj −X′
j

)2
+

(

Yj −Y′
j

)2
+

(

Zj −Z′
j

)2
(4)

where j is an head position sample (because the points are
generated and acquired in a discrete manner); n is the total
number of samples originated during the evaluation time;
(X′,Y′,Z′) represent the calculated head coordinateswith the
CPG parameters and (X,Y,Z) represent the offline observed

head coordinates. Only head position errors are computed in
the fitnessfunction, because we only control threeDOFs and
as such cannot control head orientation.

In the optimization processeach point is evaluated accord-
ing to its fitnessfunction value. Since we have apopulation
of points the one with the smallest distance is denoted as
the best point. Then, in the EM algorithm, each point is
directed for a better position, inside of the allowed limits.
The search ranges of the head CPG control parameters were
set beforehandas shown in Table I for thepurposeof efficient
learning and according to the limits of the tilt , pan and
nod DOFs. Search for optimal parameters is carried out by
performing the overall optimization system over a preset
number of iterations.

TABLE I

SEARCH RANGES OF CPG PARAMETERS

Parameter Range Unit

Atilt [0,75] (o)

ωtilt [1,12] (rads−1)

Otilt

[

−75+ Atilt
2 ,0− Atilt

2

]

(o)

Apan [0,(88+88)] (o)

ωpan [1,12] (rads−1)

Opan

[

−88+ Atilt
2 ,88− Atilt

2

]

(o)

Anod [0,(45+15)] (o)

ωnod [1,12] (rads−1)

Onod

[

−15+ Atilt
2 ,45− Atilt

2

]

(o)

The combinations of amplitude, offset and frequency of
each tilt , pan and nod oscill ators, that are necessary to
generate the desired head movement, form each point of the
population. Each coordinate of the point consists in 9 CPG
freeparameters that span our vector xi for the optimization,
as follows

xi
1 xi

2 xi
3 xi

4 xi
5 xi

6 xi
7 xi

8 xi
9

Atilt ωtilt Otilt Apan ωpan Opan Anod ωnod Onod

B. Electromagnetism Algorithm

The EM algorithm starts with a population of randomly
generated points from the feasible region. Analogous to
electromagnetism, each point is a charged particle that is
released to the space. The charge of each point is related
to the fitness function value and determines the magnitude
of attraction of the point over the population. The better the
fitnessfunction value, the higher the magnitude of attraction.
The charges are used to find a direction for each point to
move in subsequent iterations. The regions that have higher
attraction will signal other points to move towards them.
In addition, a repulsion mechanism is also introduced to
explore new regions for even better solutions. Thus, the
EM algorithm comprises 3 procedures: Initialize that will
run only once in the start of the EM algorithm, CalcF and
Move, these latter running sequentially every iteration. A
more detailed explanation of the EM algorithm follows.

Initialize is a procedure that aims to randomly generate a
population of points, xi , from the feasible region, where each
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coordinate of a point is assumed to be uniformly distributed
between the corresponding upper and lower bounds. Note
that in order to guaranteethe feasibilit y of the initial points
andall pointsgenerated duringthesearch arepair mechanism
was implemented. Thus, an infeasible solution is repaired
exploring the relationsamong variablesexpressed by the box
constraints.

Then to compute the fitness function value for all the
points in the population, they will be the input of the head
movement generation process (see Fig. 4) and by applying
forward kinematics the resultant (X,Y,Z)calculated head coor-
dinates are computed. With them the fitness function value
for all the points is calculated and the best point, which is
the point with the best fitness function value, is identified.

For the CalcF procedure, the Coulomb’s law of the
electromagnetism theory is used. Thus, the force exerted ona
point via other points is inversely proportional to the square
of the distance between the points and directly proportional
to theproduct of their charges. Then, we computethe charges
of the points according to their fitness function values. The
charge of each point determines the power of attraction or
repulsionfor that point. In thisway thepoints that havebetter
fitnessfunction valuespossesshigher charges. Thetotal force
vector exerted oneach point is then calculated by adding the
individual component forces between any pair of points.

The Move procedure uses the total force vector to move
the point in the direction of the force by a random step
length. The best point is not moved and is carried out
to the subsequent iterations. To maintain feasibilit y, the
force exerted on each point is normalized and scaled by
the allowed range of movement towards the lower or the
upper bound, for each coordinate. To ensure feasibilit y in
this movement algorithm we define the projection of each
coordinate of the point to the feasible region, according to
the range presented in Table I.

After the EM algorithm, each point should be evaluated
in terms of fitness function value, so they should go to the
head movement generation process. Then this algorithm is
repeated.

C. Experimental Results

The optimization system was implemented in Matlab
(Version 6.5) running in an AMD Athlom XP 2400+ 2.00Gz
(512 MB of RAM) PC. The system of equations was
integrated using the Euler methodwith 1ms fixed integration
steps (similarly to the simulated robotic experiments). The
evaluation time for head movement generation is 30s.

In our implementation, the optimizationsystem endswhen
thenumber of iterationsexceeds2000iterations. In this study
the number of points in the population was set to 20. When
stochastic methods are used to solve problems, the impact of
the random number seeds has to be taken into consideration
andeach optimization process should beruna certain number
of times. In this experience we set it to 10.

Table II contains the Best, Mean and standard deviation
(SD) values of the solutions found (in terms of fitness
function and time) over the 10 runs. We can seethat the SD

TABLE II

PERFORMANCE OF EM ALGORITHM IN THE OPTIMIZATION SYSTEM

Best Mean SD Best Mean SD
fitness fitness fitness time time time
(mm) (mm) (mm) (hours) (hours) (hours)
4261 5325.53 870.6349 6.1047 6.5089 0.4120

value, in terms of fitnessfunction, is a large value. It denotes
that fitnessvalues obtained in each run are not similar. It can
be seen by Fig. 5 that shows the evolution of the best (solid
line) and mean (dashed line) fitness function value over the
2000iterations. Thebest point hasafitnessvalueof 4261that
was achieved at iteration 1150. The best run took 6h18min
(CPU time) andeach iteration took in average11.16seconds.
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0.4261
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x 10
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Fig. 5. Best (solid) and mean (dashed) fitness evolution.

Table III shows the tuned CPG parameters representing
the best point found, over 2000iterations, in the 10 runs.

TABLE III

BEST POINT CPG PARAMETERS

Parameter Value Unit

Atilt 0.0001 (o)

ytilt −6×10−5 (o)

wtilt 6.707 (rads−1)

Apan 7.77 (o)

ypan 0.072 (o)

wpan 2.12 (rads−1)

Anod 0.0001 (o)

ynod −1.18 (o)

wnod 1 (rads−1)

A better understanding of the evolution of the fitness
function can be seen in Fig. 6 where the distance between
observed and calculated values of the head movement at
the beginning and at the end of the optimization system is
displayed. We can observe that this distance, in each sample
time for time ranging between t = 5 and 15s, is smaller at
the end of the process. In average, we can also conclude that
after 2000iterations of the optimization system, a reduction
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Fig. 6. Distance between observed and calculated values of the head
movement at the beginning (dotted line) and at the end (solid line) of the
optimization system, for time ranging from 5 to 15 seconds.

of 22,17% of the head movement is verified.
Fig. 7 depicts the time courses of the (X,Y,Z) calculated

(solid line) head movement according to the head CPG
control parameters of the best solution found. The observed
(dotted line) head movement is also ill ustrated. Table IV
gives the maximal movement variation in the (X,Y,Z) co-
ordinates for the calculated and observed movements. We
conclude that the generated movements are quite similar in
the X coordinate. The calculated movement is quite different
in theY andZ coordinate. This results from the fact that only
the pan joint controls movement in the X coordinate, while
both the tilt and nodjoints control the Y and Z coordinates.
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Fig. 7. (X,Y,Z) calculated (solid line) and observed (dotted line) head
movement, during 30s, according to the head CPG control parameters from
best point on the final of optimization system.

Fig. 8 depicts 3D calculated (solid line) and observed
(dotted line) head movement for the best point.

We have also made another experiment, where we have
changed the size of the population to 50 points, maintaining
the number of 2000 iterations to terminate the process.

TABLE IV

MAX IMAL MOVEMENT VA RIATION IN (X,Y,Z)

Max ∆X Max ∆Y Max ∆Z
(mm) (mm) (mm)

Calculated Movement 11.47 0 0.2
Observed Movement 13.42 5.9 11.3

−156 −154 −152 −150 −148 −146 −144
−6

0

6
225

227

230

X(mm)
Z(mm)

Y(mm)

START FINAL

startfinal

Fig. 8. 3D calculated (solid line) and observed (dotted line) head
movement according to the CPG parameters of the 1150th iteration best
point. START (FINAL) and start (final) indicate where the observed and
calculated movement started (ended), respectively.

Running the optimization system we obtained a best fitness
function value of 3991at iteration 1760.

IV. SIMULATION RESULTS

Our aim was to build a system able to eliminate or reduce
thehead motion of a robot that walks in the environment. For
that, we set a dynamical controller generating trajectories for
the head joints such that the final head movement is opposite
to the one induced by locomotion.

In this section, we describe the experiment done in a
simulated ers-7 AIBO robot using Webots [8]. Webots is a
software for the physic simulation of robots based on ODE,
an open sourcephysics engine for simulating 3D rigid body
dynamics. The model of the AIBO is as close to the real
robot as the simulation enable us to be. Thus, we simulate
the exact number of DOFs, massdistributions and the visual
system.

The ers-7 AIBO dogrobot is a 18 DOFs quadruped robot
made by Sony. The locomotion controller generates the joint
angles of the hip and knee joints in the sagittal plane, that
is 8 DOFs of the robot, 2 DOFs in each leg. Only walk gait
is generated and tested.

The head controller generates the joint angles of the 3
DOFs: tilt , pan and nod. The other DOFs are not used for
the moment, and remain fixed to an appropriately chosen
value during the experiments.

The AIBO has a camera built i nto its head.

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

6



At each sensorial cycle (30ms), sensory information is
acquired. The dynamics of the CPGs are numerically inte-
grated using the Euler methodwith a fixed time step of 1ms
thus specifying servo positions. Parameters were chosen in
order to respect feasibilit y of the experiment and are given
in Table V and VI.

TABLE V

PARAMETER VA LUES FOR GENERATING LOCOMOTION

β ω (rad s−1) µi
1

2β µi
(s)

Front Limbs 0.1 2.044 6.25 0.8
Hind Limbs 0.025 2.044 25 0.8

TABLE VI

PARAMETER VA LUES FOR GENERATING HEAD MOTION

β ω (rad s−1) µi
1

2β µi
(s)

tilt 1.25×109 4.19 2.5×10−9 0.8
pan 0.041 2.09 15.13 0.8
nod 1.25×109 4.19 2.5×10−9 0.8

Because we are working in a simulated environment, we
are able to build a GPS into the AIBO camera, that enable
us to verify how the head effectively moves in an external
coordinate system. Two simulations are performed: the robot
walks during 30s with and without the feedforward solution
and its GPScoordinates are recorded. Results are compared
for these two simulations. Fig. 9 shows the GPScoordinates
for the experimentswith (solid line) and without the feedfor-
ward solution (dotted line). The overall experiment can be
seen in the attached video.
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Fig. 9. (X,Y,Z) coordinates of the GPSpositioned in the AIBO head when
the robot walks during 30s. Solid and dotted lines indicate the experiment
in which the feedforward solution is and is not implemented, respectively.

We expect that the proposed feedforward solution mini-
mizes the variation of the GPScoordinates, meaning that the
head remains near the same position during the experiment.

We observe that the X coordinates of the marker position
oscill ate less. Note that there is some drift in the X coor-
dinates, meaning the robot slightly deviates towards its side
whilewalking. Theobserved peaks in theY coordinatereflect
the final stage of the swing phase and the begin of the stance
phases of the fore legs, corresponding to an accentuated
movement of the robot center of mass. This problem will
be addressed in current work, by improving the locomotion
controller and take into account balance control [3].

V. CONCLUSIONS AND FUTURE WORKS

In this article, we have addressed head stabili zation of a
quadruped robot that walks with a walking gait. A locomo-
tion controller based on dynamical systems, CPGs, generates
quadruped locomotion. The required head motion needed to
eliminate or reducethe head shaking induced by locomotion,
is generated by CPGs built -in in the tilt , pan and nod
joints. These CPG parameters are tuned by an optimization
system. This optimization system combines CPGs and the
EM algorithm. As a result, set of parameters obtained by
the EM allows to reduce the head movement induced by the
locomotion.

Currently, we are using other optimization methods, like
the particle swarm optimization, and testing other fitness
functions. We will extend this optimization work to address
other locomotion related problems, such as: the generation
and switch among different gaits according to the sensorial
information and the control of locomotion direction. We
further plan to extend our current work to online learning
of the head movement similarly to [9].
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Combination of Reinforcement Learning and Neural Networks

Anastasia Noglik and Josef Pauli

Abstract— Reinforcement Learning has been alr eady suc-
cessfully applied to the problem of a target or iented robot
navigation. However one of its drawbacks is the usually ob-
served low convergence rateof the learning progress. To weaken
this disadvantage the present work suggests to use a control
function which is represented by a neural network to prevent
the agent of collisions with objects if a dangerous situation
has been recognized. This leads to a better performance of the
learning processand to a reduced number of collisions. Sincean
evolutionary algor ithm is used to develop the neural network,
lit tle effor t is necessary to train the network.

I . INTRODUCTION

Reinforcement Learning (RL) is a sub-area of machine
learning and describes methods for solving a classof prob-
lems. Inspired by psychological theory, RL is concerned with
how an agent ought to take actions in an environment so as to
maximize some notion of long-term reward. Reinforcement
Learning algorithms attempt to find a policy that maps states
of the world to the actions the agent ought to take in those
states.
In the last few decades a lot of interesting work have been
done in this area. Several algorithms have been developed
to solve various problems including robot control, elevator
scheduling or telecommunications. RL was also successfully
applied in the development of game strategies of backgam-
mon and chess.
However, similar to most other algorithms there are also
some main drawbacks, which have to be taken into ac-
count. One common issue is the poor convergence of these
approaches [9]. The reason of it usually lies in the high
dimensionality of the corresponding policy/value function.
Also a large number of episodes is needed to find a suitable
strategy. In case of planning and learning Sutton et. al.
addressed this problem by developing the Dyna-Q algorithm
[11]. Here the policy/value function is influenced based not
only on the real experience of an agent, but also on its
simulated experience, which is produced throughthe model-
based processes including in this algorithm.
In the work presented here, this problem is addressed by in-
corporating additional context knowledge about the applica-
tion domain. This additional knowledge can highly improve
the convergence of the reinforcement method and usually
can be easily extracted from the corresponding domain.
However a lot of the existing algorithms discard this kind
of knowledge or do not provide any way to incorporate it in
the learning process.
There aredifferent formsof context knowledge. One example
is knowledge which is extracted from the information which
is already used in the learning process of the agent. This
context knowledge can be provided to the learning processin

form of e.g. a heuristic function, see[2], [5]. An other form
of context knowledge is extracted from information about
the environment which is not used in the learning process.
This context knowledge is used in a control function for the
agent.
The functionality of the proposed method is ill ustrated in
case of a goal oriented navigation problem. Here the aim
of the agent is to learn a short and colli sion freepath from
a given starting state to a target point through a complex
environment. The agent has two sources of information
available. The idiothetic source is used to specify the agent’s
position in a state space. The allothetic source, in this work
the infrared sensors, is used to extract the required additional
knowledge. This knowledge serves as a control function to
save the agent from dangerous situations, like unintended
bumping into the wall . In this method the control function is
approximated using an evolutionary gained artificial neural
network (ANN) (NEAT Method [10]).
An example for the combination of both methods is the
NEAT+Q algorithm, [13]. This algorithm combines the
power of RL methods with the abilit y of NEAT to learn
effective representations. The NEAT+Q algorithm is an ex-
tension of the NEAT method using RL. The algorithm which
is proposed in the present work is an extension of RL using
ANN which is gained using NEAT.
The incorporation of the control function into the learning
process involves several interesting aspects. First of all the
two information sources have to be fused together. Secondly
the question of an appropriate discretization of the action
spaceis raised. The way the control function influences the
learning processis described in more detail i n the remainder
of this paper.
The present work investigates the performance of the pro-
posed method by varying the influencestrength of the control
function onthe learning process. The investigations are per-
formed with aScorpionrobot from EvolutionRoboticswith a
certain mechanical designand infrared sensors. Therefore the
results are not valid for all models of the robot. But the used
methods for investigation and determination of optimized
parameters are applicable to all types of agents.

II . BACKGROUND

In the present work the linear gradient Sarsa(λ)-Algorithm
is used as a basic method [7]. Tile Coding is selected as
discretization method for the state space. The action-state
function is approximated by a linear function. The proposed
extension uses local information as context knowledge
which is different from the global information in the state
of the agent. Hence the basic method can be replaced by
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Fig. 1. Simple environment 1 for the determination of optimal parameter
sets

other Reinforcement Learning methods. The state space can
be discretized or represented by different approaches.

A. Sarsa(λ) Algorithm

Reinforcement Learning is a synonym of learning by
interaction. Fully adaptive control algorithms which learn
both by observation and trial-and-error are a promising
approach in machine learning. RL is defined as the learning
of a mapping from situations S (S is the set of possible
states) to actionsA (A is theset of actions) so as to maximize
an accumulated scalar reward or reinforcement signal r.
Rewards r are gratifications or punishments and are ameans
of informing the agent about the target.
An action-state value function Qπ(s, a) is defined as the
value of taking action a ∈ A(s) in the state s ∈ S under
a policy π and provides a measure for the quality of the
(s, a)-pair. The function is defined as an expected return of
future rewards:

Qπ(s, a) = Eπ

{

∞
∑

k=0

γkrt+k+1|st = s, at = a

}

where γ is a discount factor [12].
Sarsa(λ) is an on-policy learning method, which continually
estimates Qπ for the behavior policy π [12]. Learning is an
iterative process. In the beginning the agent owns a random
suboptimal value function and strategy. The basic learning
step updates a single Q-value. at+1 is obtained from the ǫ-
greedy policy that usesvalues from the estimated Q-function.
Subsequently the Q-value for (s, a) is updated as follows:

Q(st, at)← Q(st, at)+α[rt+1+γQ(st+1, at+1)−Q(st, at)]
(1)

where α is the learning rate. The Q-function is approximated
by a linear function.

B. Tile Coding, Function Approximation, State Space, Ac-
tion Space

1) Tile Coding: The successof RL with large continuous
state spaces depends on an effective Q-function approxima-
tion. Of the many function approximation schemes proposed,
tile coding offers an empirically successful balance among
representational power, computational cost, ease of use and
it has been widely adopted in recent RL work[8].
To generalize the state representation the table of Q-values

Fig. 2. Model of the ERSP Scorpion robot of the company Evolution
Robotics

can be approximated using a representation of the state space
with tile coding [1]. Tile coding is a form of coarse coding.
In tile coding the receptive fields of features are grouped into
exhaustivepartitionsof the input space. Each such partition is
called tili ng, andeach element of the tili ng iscalled tile. Each
tile is the receptive field for one binary feature. According
to the chosen discretization of the state space, one state is
represented by one feature only.

2) Function Approximation: The Sarsa(λ) algorithm with
function approximation was first explored in [7]. The Q-
function is approximated in the present work by a linear
function. The representation of the Q-function by a parame-
ter vector is defined as:

Q(s, a) :=
∑

i∈Fs

θa(i)·φs(i), Fs ← set of features present in s

The respective Q-value corresponds then to the value of the
currently involved binary feature.

3) State Space: The three axes of the state spacein the
defined navigation problem correspond to the horizontal x

and vertical position y of the agent and its orientation o.
The discretization of the state spacesignificantly influences
the performance of the learning process. The discretization
Nx×Ny×No specifies the number of feature centers along
thepositionsand orientationaxesrespectively. Thex, y-plane
was discretized according to the robot size. Each rectangle
of this plane was as big as it does not exceed the size of the
robot. An example of such a discretization can be seen in
figure 1.

4) Action Space: An action is a vector which consists
of two scalar values forward velocity and rotation velocity
(v, β), where the unit of v is centimeters per minute and the
unit of β is degrees per minute. The action spaceof the to be
learned Q-Functionconsistsof threediscrete actions: forward
movement (v := 10, β := 0), turn left (v := 0, β := 15◦),
turn right (v := 0, β := −15◦). The control function which
is represented by an ANN gives only real values, (v, β) ∈
[0, 10]× [−90◦, 90◦].

C. Robot and Intelli gent Agent

In the present work the terms mobile robot and intelli gent
agent are used synonymously. The experiments with the
agent are performed as a numerical simulation. But as input
to the agent true sensor values are used which have been
measured previously with the real robot. This results in a
true-to-reality simulation [4]. That is the reason why the
intelli gent agent in the simulation is called robot. The model
of themobileScorpion robot (agent) used in thesimulation is
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Fig. 3. Example of the automatically developed ANN

equipped with seven infrared sensors (s1, . . . s7), seefigure
2.

D. NEAT Method

Neuro Evolution of Augmenting Topologies (NEAT) ap-
plies the evolutionary approach for the development of the
topology as well as for the determination of the weights of
an Artificial Neural Network (ANN). A NEAT is used in the
simulation for the training of an ANN, which is able to take
over the control of the robot. Each ANN is an individuum
with the same input (7 sensors and 1 bias node) and output (2
control commands for rotation and forward velocity) layers.
NEAT has been selected due to a high adaptation abilit y and
relatively simple application. An extensive description of the
system provides the work [10].
The counter of the covered angle from the given center in the
pre-defined direction has been selected as fitness function.
Examples for more fitnessfunctions are described in [6] and
[3]. Different scenarios have been used in the simulation
during the training phase to train the required skill s. For
example the agent learnsa fast reaction to suddenly occurring
objects when its starting point is very close to a wall .
The ANN which represents the control function is a kind of
reactive behavior pattern for robots. The ANN encodes a di-
rect mapping of the sensor values on the control commands.
The resulting ANN intervenes during dangerous situations to
prevent colli sions with objects.

E. Control Function appriximated by ANN

An example of an ANN which has been trained with
the above described method, fitness function and scenarios
is depicted in figure 3. This ANN has been also tested
successfully in reality. Yellow marked edges have apositive
weighting, blue marked edges have a negative weighting.
The thicker the line is, the higher is the absolute value of
the weight for the shown connection. The green lines are the
bias connections. The red connections mean a feedback.

III . CONCEPT OF EXTENDED METHOD

To weaken Reinforcement Learning disadvantages the
present work suggests to use a control function which is
represented by a neural network to prevent the agent of
colli sions with objects if a dangerous situation has been
recognized. This leads to abetter performanceof the learning
processand to a reduced number of colli sions.
To extend the basic method bycontrol function, the method
has to be modified in such way, that the learning process
is affected as littl e as necessary and the benefit is as high

as possible. On the one hand RL should not notice the
extension, and on the other hand the control function shall
protect the robot from colli sions as goodas possible.
Such a control function can not only be represented with an
ANN which is achieved with an evolutionary approach. But
the control function can can also be gained e.g. by using
control theory or fuzzy logic. Such a control function has
to be generated only once and can be used as extension of
the basic method for different problems. Therefore it is not
necessary to consider the timewhich isneeded for generation
of the control function in the overall ti me which is needed
for the solution of the problem.

A. Problems and Solutions

The robot receives sensor values which are in the range
of [0; 80]. The directions of the robot’s sensors are depicted
in figure 2. A colli sion with the environment is signaled, if
a sensor measures the minimum value below a predefined
threshold, so smin = mini=1,...,7si < slimit, whereas here
slimit := 15.
The basic and extended methods of the learning processhave
the following sequence: After the lowest sensor value smin

falls below the given limit of slimit the colli sion is signaled
and the agent is displaced to the starting point. The eligibilit y
traces are set to zero and the episode is continued.
The two important questions are: 1. When is the situation
as dangerous, so that a neural network has to take over the
control of the robot? 2. When does this intervention disturb
dramatically? These questions have strongly influenced the
development.
The balancebetween the intervention in the learning process
and the benefit of the control function has to be right so that
the methodcan be used. To resolve the previously mentioned
dilemma, several experiments have been accomplished to
findan appropriatepair of the following parameters: sCritical

and βDiscretisation, see figure 4 rows 10 and 14. Thus the
control function is only used, if smin ∈ [slimit; sCritical].
The learning process with RL has global information as
basis. Each state will be extracted from odometry data and
represented in the coordinate system of the starting point.
The answer of the neural network is determined based on
local information. The artificial neural network provides the
answer to the sensor values. The result is a kind of data
fusion. The control function is approximated by the neural
network with sensor values (local information) as input. The
local information can be different althoughthe state from the
agent’s perspective is the same. The reasons are the use of
different kinds of information, the discretization of the state
space and the inaccuracy of the sensor values, for which the
variable βDiscretisation is responsible.

B. ANN+Sarsa(λ)-Algorithm

The extension of the basic Sarsa(λ) algorithm is depicted
in figure 4. The difference is the addition of rows 09 to 18
and32 to 34. Thisblock isused, if theminimum sensor value
smin = minis1, . . . , s7 goes below the specified sCritical.
In row 11 the answer of the ANN on the sensor values
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(s1, . . . , s7) is taken. The rows 14 − 18 are a kind of pro-
jection of the continuous action (v, β) in the discrete action
space {forwardmovement, turnright, turnleft}. In this
case it is a continuous action space, but it is projected into
an ordinary discrete action spaceby means of the parameter
|βDiscretisation.
It has been decided to use ”limited learning” instead of an
ANN intervention, see row 13 in figure 4. The Temporal
Difference (TD)-error value δt is set to a constant value
rReflex. That means, if the ANN takes over the control,
the Q-function for the current state and the projected action
is determined explicitly independent on the global target
and not learned, compare Eq. (1). Hence the agent has no
possibilit y to learn in the critical points.

C. Parameterization of the Extended Method

Two variables are responsible for the right balance be-
tween the intervention into the learning process and the
improvement by using an ANN. The parameter sCritical

determines when the ANN is taking over the control. The
parameter βDiscretisation is responsible for the projection of
the action provided by the ANN in the discrete action space.
rReflex outputs always the same value, so that the agent gets
a certain value at the critical points. rReflex = −5 is more
painful for the agent than each step (rstep = −1), but it is not
worse than a reward of rcollision = −20. The gratification
reward is the value rtarget = +1000.
The tests have been performed with the following parame-
ters: α = 0.2, ǫ = 0.1, γ = 0.9, λ = 0.8. This is a
reasonable parametrization. No procedure for the selection
of these learning parameters has been used.

IV. EVA LUATION STRATEGY

The performance of the basic method will be compared
to that of the proposed method by applying both methods
to the navigation problem in the threepreviously mentioned
environments. The discretization of all environments was
chosen to be standard Tile Coding (TC). Also the used
reward model was equal in all conducted experiments.
The balancebetween the intervention in the learning process
and the benefit of the control function has to be right so that
the methodcan be used. To resolve the previously mentioned
problem, several experiments have been accomplished to
find an appropriate pair of the following parameters:
sCritical and βDiscretisation. Thereby two criteria have been
used to compare the performance of the two methods.

The first criterion is the learning progressdefined as:

LearningProgressBE :=
1

N

N
∑

i=1

¯stepi

where ¯stepi is the average number of steps in the i-th
episode. According to the definition smaller values of this
criterion indicate a better learning process. In each episode
in total 30 tests have been conducted. In case of the first
two environments N was chosen to be 250. In the third
environment it is set to N = 500. The computed values

of this criterion can be found in the next section in tables I
and IV.
The secondcriterion is the average number of wall contacts:

¯Wallcontacts =

N
∑

j=1

¯Wallcontactsj

where ¯Wallcontactsj is the average number of wall
contacts during one episode, in which in total 30 tests
have been conducted. This ensures a certain statistical
significance. Again in case of the first two environments N

was set to 250, and in case of the third environment to 500.
This criterion was chosen, because a small number of wall
contacts is important in case of a navigation problem. The
computed values of this criterion can be found in tables II
and V.
To evaluate the influence of the ANN on the learning
progress of the extended method the following third
criterion has been developed. The average number of
network applications depends on the configuration of the
parameters and is listed in table III .
Relative deviations emphasize the positive or negative
influence of the extension with an ANN in comparison to
the standard algorithm. The deviation value is calculated
with Deviation := (1 −

(numberparameters)
numberstandard

) ∗ 100%.
LearningProgress as well as WallContacts are inserted
instead of number for each parameter combination.

V. RESULTS

In the following the results for two simple environments,
see figure 1 and 5, and one more complex environment are
presented. A part of the complex environment is shown in
figure 6. In all experiments one tili ng has been used. In
environment 1 and 2 the tili ng has 10 × 10 × 24 tiles, in
environment 3 the tili ng has 49× 39× 24 tiles.
In table I the learning progressis listed for different parame-
ter sets, sCritical ∈ {15, 20, 25, 30, 35} andβDiscretisation ∈
{1, 2, . . . 9}. In the lower part of table I relative deviations
are listed in relation to the basic method. The tests have been
performed in environment 1.
A value of 25 of the parameter sCritical results in
a positive impact for all values of the parameter
βDiscretisation. The best combination for the tested parame-
ters (sCritical, βDiscretisation) is (25, 6). This combination
results in an improvement of more than 20% for the selected
criterion, the learning progress, in comparison to the basic
method.
The results for the second criterion, the average number of
wall contacts, are listed together with the relative deviations
in table II . Theparameter valuesCritical = 30 shows thebest
results with improvements between 69% and 76%. But the
best parameter combination for the learning progress(25, 6)
provides also a relative high reduction of wall contacts per
episode of 59 %. The improvement of the learning progress
is much higher for the parameter combination (25, 6) than
for any parameter combination with a sCritical of 30 with
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TABLE I

LEARNING PROGRESS (AV ERAGE NUMBER OF STEPS) FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VA RYING PARAMETER

βDiscretisation BETWEEN 1 AND 9. ROWS: VA RYING PARAMETER sCritical BETWEEN 15 AND 35. LOWER PART: RELATIVE DEVIATION TO THE

BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 386.31 386.31 386.31 386.31 386.31 386.31 386.31 386.31 386.31

15 404.57 423.48 391.76 377.32 376.20 374.00 356.54 405.55 385.69
20 458.71 406.55 417.48 451.70 418.66 426.97 446.28 422.27 430.91
25 362.54 344.69 325.13 333.65 314.66 301.91 336.54 334.89 313.72
30 415.17 385.20 417.87 411.52 369.50 377.83 386.47 380.90 365.78
35 1190.59 690.74 794.55 783.61 1045.50 1046.23 1795.96 696.66 790.50

standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 -4.72% -9.62% -1.41% 2.32% 2.61% 3.18% 7.7% -4.97% 0.15%
20 -18.74% -5.23% -8.06% -16.92% -8.37% -10.52% -15.52% -9.3% -11.54%
25 6.15% 10.77% 15.83% 13.63% 18.54% 21.84% 12.88% 13.31% 18.78%
30 -7.47% 0.28% -8.16% -6.52% 4.35% 2.19% -0.04% 1.4% 5.31%
35 -208.19% -78.8% -105.67% -102.84% -170.63% -170.82% -364.89% -80.33% -104.62%

TABLE II

NUMBER OF COLL ISIONS WITH OBJECTS (WALL CONTACTS) FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VA RYING

PARAMETER βDiscretisation BETWEEN 1 AND 9. ROWS: VA RYING PARAMETER sCritical BETWEEN 15 AND 35. LOWER PART: RELATIVE DEVIATION

TO THE BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 3.91 3.91 3.91 3.91 3.91 3.91 3.91 3.91 3.91

15 4.7 4.85 4.33 4.21 4.18 4.17 4.04 4.33 4.18
20 4.94 4.43 4.6 5.02 4.69 4.65 4.94 4.73 4.63
25 1.91 1.8 1.65 1.75 1.56 1.6 1.72 1.69 1.58
30 1.19 1.03 1.14 1.07 0.95 0.97 1.01 1.01 0.93
35 1.39 1.16 1.21 1.3 1.38 1.28 1.73 1.16 1.32

standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
15 -20.02% -23.83% -10.7% -7.65% -6.85% -6.43% -3.16% -10.67% -6.89%
20 -26.31% -13.19% -17.61% -28.13% -19.87% -18.78% -26.13% -20.77% -18.31%
25 51.19% 53.98% 57.73% 55.24% 60.08% 59.02% 55.91% 56.73% 59.55%
30 69.57% 73.7% 70.65% 72.65% 75.51% 75.08% 74.13% 73.99% 76.02%
35 64.31% 70.23% 68.88% 66.59% 64.66% 67.11% 55.79% 70.37% 66.23%

TABLE III

NUMBER OF ANN APPLICATIONS FOR ENVIRONMENT 1 FOR DIFFERENT PARAMETER SETS. COLUMNS: VA RYING PARAMETER βDiscretisation

BETWEEN 1 AND 9. ROWS: VA RYING PARAMETER sCritical BETWEEN 15 AND 35.

1 2 3 4 5 6 7 8 9
standard 0 0 0 0 0 0 0 0 0

15 2.33 2.37 2.18 2.1 2.2 2.15 2 2.33 2.2
20 16.78 15.14 15.48 16.61 15.38 15.87 16.16 15.42 15.88
25 33.3 31.49 30.75 30.33 29.12 29.38 31.25 31.14 28.92
30 53.99 50.75 54.39 52.81 48.46 49.3 50.04 49.42 48.14
35 103.6 94.19 94.63 94.7 100 100.88 115.84 91.95 97.19

TABLE IV

LEARNING PROGRESS (AV ERAGE NUMBER OF STEPS) FOR ENVIRONMENT 2 FOR DIFFERENT PARAMETER SETS. COLUMNS: VA RYING PARAMETER

βDiscretisation BETWEEN 1 AND 9. ROWS: VA RYING PARAMETER sCritical BETWEEN 20 AND 30. LOWER PART: RELATIVE DEVIATION TO THE

BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 444.94 444.94 444.94 444.94 444.94 444.94 444.94 444.94 444.94

20 473.83 482.11 456.29 535.06 495.75 477.24 523.53 484.17 487.27
25 439.58 431.54 417.76 418.8 431.89 470.48 474.77 470.02 446.54
30 574.74 560.71 461.58 650.46 897 872.91 555.76 601.73 863.05

standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 -6.49% -8.35% -2.55% -20.25% -11.42% -7.25% -17.66% -8.81% -9.51%
25 1.2% 3.01% 6.1% 5.87% 2.93% -5.73% -6.7% -5.63% -0.36%
30 -29.17% -26.01% -3.74% -46.19% -101.6% -96.18% -24.9% -35.23% -93.97%
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TABLE V

NUMBER OF COLL ISIONS WITH OBJECTS (WALL CONTACTS) FOR ENVIRONMENT 2 FOR DIFFERENT PARAMETER SETS. COLUMNS: VA RYING

PARAMETER βDiscretisation BETWEEN 1 AND 9. ROWS: VA RYING PARAMETER sCritical BETWEEN 20 AND 30. LOWER PART: RELATIVE DEVIATION

TO THE BASIC METHOD

1 2 3 4 5 6 7 8 9
standard 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35 4.35

20 6.02 5.85 5.76 6.59 6.12 5.41 6.25 5.95 5.86
25 3.81 3.6 3.25 3.33 3.11 3.92 3.72 3.66 3.2
30 1.97 1.99 1.83 2.05 2.02 2.07 1.82 2.17 2.07

standard 0% 0% 0% 0% 0% 0% 0% 0% 0%
20 -38.41% -34.54% -32.34% -51.43% -40.63% -24.27% -43.64% -36.68% -34.69%
25 12.4% 17.15% 25.25% 23.49% 28.56% 9.77% 14.46% 15.89% 26.47%
30 54.65% 54.25% 57.83% 52.7% 53.46% 52.37% 58.19% 50% 52.35%

at the same time asimilar reduction of wall contacts.
Another influence criterion is shown in table III . The
number of ANN applications for different parameter sets.
The correlation is not surprising. The higher the parameter
sCritical is, the more often the ANN is used. The parameter
βDiscretisation has no significant impact on the number of
ANN applications.
To verify the general correlations the tests are performed for
different parameter sets in another environment, see figure
5. The results for the learning progressare listed in table IV
and the results for the number of wall contacts are listed in
table V. A smaller parameter range can be chosen, since for
the parameter sCritical the values 20 and 35 showed negative
results in previous experiments. A parameter of sCritical =
25 showed also in this environment 2 the best results for
the learning progress. But the best value for the parameter
βDiscretisation has shifted. The reason could be the high
number of angles in this environment. A finer projection
is needed in the discrete action space. For the parameter
set (25, 5) the learning progress has been improved by
3%. But for the parameter set (25, 6) the agent showed a
learning progress which is worse by 6%. The number of
wall contacts is also higher in comparison to environment
1. But there is still an improvement of almost 30% using
the parameter set (25, 5), see table V. To understand the
influence of the different parameter values on the learning
progress, several corresponding curves have been plotted in
figure 7. The red curve shows the learning progressusing the
basic method in the environment shown in figure 1. Starting
with the initial value of 10000, maximal possible steps in
one episode, it decreases steeply down to a value of 63
after the 20-th episode. Between the 20-th and the 250-th
episode there is almost no improvement. The green, blue
and violet curves show the learning progressof the proposed
method for different parameter values. The green curve with
the parameters sCritical = 20 and βDiscretisation = 5 shows
a similar development to that of the basic method, however
in contrast to the basic method the number of steps starts
to decrease earlier. The similarity evolves from the fact that
because of the chosen sCritical the impact of the ANN on
the learning process is too small . After its activation it does
not have much elbowroom to move the robot away from

the wall . As mentioned above, if the distance to the wall i s
smaller than slimit, so smin < slimit := 15 a colli sion is
signaled and the agent is placed to the starting point again.
However, other parameter sets of the proposed method lead
to different developments of the learning curves. With the
greater values of the parameter sCritical, the activated ANN
if smin < sCritical has much more impact on the learning
process. As shown by the blue and violet curve the robot
already reaches its target during the first episodes. Moreover
it needs from the beginning lessthan 4000 steps to reach the
target.
Considering this figure ageneral trend can be identified. The
higher the value of the parameter sCritical is, the less steps
are needed for the agent to reach its target during the first
episodes. The overall shape of the corresponding curves also
becomesmore complanate. Thusan appropriate impact of the
ANN on the learning processleads to a 20% better learning
progress. But the disadvantage of the proposed method can
also be observed in figure 7. The minimum number of
required steps in one episode is reached later than using
the basic method. The conclusion is, that the robot learns
faster in the first few episodes. But it learns slower in the
subsequent episodes.
In figure 8 the number of wall contacts is plotted over
the episodes. Again the different curves correspond to the
results of the basic method and the proposed method with
different parameter sets. After the 15th episode all curves
show a similar development. However in the first episode
the basic method and the proposed method parameterized
with sCritical = 20 and βDiscretisation = 5 produce more
than 200 wall contacts. This greatly effects the agents health.
Much better are the results presented by the blue and violet
curves. By applying the corresponding methods to the real
robot, its probabilit y to survive is much greater, since less
wall contacts have to be endured.
The correlation between the number of ANN applications
and the number of wall contacts depending onthe number of
episode is shown in figure 9 for a parameter combination of
(sCritical = 25, βDiscretisation = 5). Both curves have been
scaled to the same level to point out the similar progress. The
reason is that the number of situations, in which the ANN
does not help is fixed. The result is a colli sion with a wall
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01 Initialize ~θ arbitrarily
02 Repeat (for each episode):
03 ~e = ~0
04 s, a← initial state and action of episode
05 Fs ← set of features present in s

06 Repeat (for each step of episode):
07 For all i ∈ Fs:
08 ~ea(i)← ~ea(i) + φs(i)
09 smin ← MIN(s1, s2, ...s7)
10 if smin < sCritical

11 a′ := (β, v) ←− ANN(s1, s2, ...s7)
12 Take action a′, observe reward r,

and next state, s′

13 δ ← rReflex

14 if |β| < βDiscretisation

15 a← forward movement
16 else
17 if β > 0

a← turn right
18 else a← turn left
19 else
20 Take action a, observe reward r,

and next state, s′

21 δ ← r −
∑

i∈Fs
θa(i) · φs(i)

22 With probabilit y 1− ǫ:
23 For all a ∈ A(s′):
24 Qa ←

∑

i∈Fs′
θa(i)φs′(i)

25 a← arg maxa Qa

26 else
27 a← a random action ∈ A(s)
28 Fs′ ← set of features present in s′

29 Qa ←
∑

i∈Fs′
θa(i)φs′(i)

30 δ ← δ + γQa

31 ~θ ← ~θ + αδ~e

32 if smin < sCritical

33 ~e← γλ~e

34 else ~e← ~0

33 s← s′

34 until s is target

Fig. 4. Algorithm of the proposed ANN+Sarsa(λ)-Method with ǫ-greedy
policy. The difference is the addition of rows 09 to 18 and 32 to 34. In
row 11 the ANN gives the answer on the sensor values (s1, . . . , s7). The
rows 14 − 18 are a kind of projection of the continuous action (v, β) on
the discrete action space{forwardmovement, turnright, turnleft}.

Fig. 5. Simple environment 2 for the verification of the optimal parameter
sets

Fig. 6. Complex environment 3 for verification of the optimal parameter
sets
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βDiscretisation = 5 in environment 1
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applicationsdepending onthe episode for theparameter set sCritical = 25,
βDiscretisation = 5 in environment 1

and a similar profile of the curves. The learning curve and
the progressof the number of ANN applications are shown
in figure 10. The profile of both curves is also similar. The
more seldom dangerous situations occur during the episodes,
the more seldom the ANN is used, and the faster the agent
reached his target. Theprogressof the threevaluesnumber of
steps to target, number of ANN applications and number of
wall contacts is very similar. The above described results are
confirmed for the more complex environment 3, see figure
11. The learning progress is shown for the basic method
and two sets of parameters sCritical = 25, βDiscretisation =
6 and sCritical = 25, βDiscretisation = 5. The optimal
parameters have been determined in previous experiments.
The agent with the proposed method reaches the target

already in the first episode like in environment 1. The agent
with the basic method reaches the target beginning with the
80th episode. But then it learns faster. The average number
of successful target achievements is listed in table VI. The
proposed method enables the agent to reach the target 430
and 439 times respectively out of 500 trials (episodes).
The agent with the basic method reaches the target 417
times averaged over 30 experiments. The progress for the
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environment 3
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Fig. 12. Number of wall contacts depeding onthe episode in environment
3

number of wall contacts from one episode to the next one
in environment 3 is similar to the simple environment 1, see
figure 12.

VI . CONCLUSION

A new method has been proposed which allows the
integration of additional context knowledge in the learn-
ing process. The proposed method has been tested for a
navigation problem. The extension with context knowledge
results in a faster learning. The method uses a neural network
additionally to the standard Sarsa(λ) algorithm to avoid
agent colli sions with the surrounding obstacles. The neural
network starts working only if the actual state of an agent
was recognized as dangerous. In the remaining situations the
usual Sarsa(λ) algorithm is used.
Several parameters are used to control the influence of the

TABLE VI

NUMBER OF SUCCESSFUL TARGET ACHIEVEMENTS IN 500 TRIALS

(EPISODES), AV ERAGE OUT OF 30 EXPERIMENTS

basic method : 417.063
Proposed method (25, 5) : 439.476
Proposed method (25, 6) : 430.571
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ANN. Different parameter sets lead to different results. A
very frequent application of an ANN yields on the one
hand to a very low wall contact rate. On the other hand
no improvements but disturbances of the overall l earning
processcan beobserved. Thus several experiments havebeen
conducted to obtain optimal parameters for the three exam-
ined environments. Thereby the above described dilemma
was solved: using the estimated parameters the impact of
the neural network was sufficient to improve the learning
progress and to reduce the number of wall contacts to an
acceptable minimum.
Becauseof the enhanced convergenceof the learning process,
less computational power is required to obtain a suitable
solution. Thereby the presented method can also be applied
to a more complex environment.
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Abstract— In this position paper we propose that in many
cases, instead of using standard regression methods for directly
capturing relationships between variables, joint probability
density estimates can and should be used for this purpose.
With a good joint probability density estimate, any relationship
which exists between variables can be extracted in the form
of a regression function. Depending on the chosen density
estimate representation, a regression function can be derived
with relatively little computational effort. In essence, this means
that by learning a joint probability density, both forward and
inverse models have been captured. This method of learning
the relationships between variables is demonstrated through a
series of experiments.

I. INTRODUCTION

It is common in a wide variety of scenarios to make use of
regression methods, ranging from basic linear regression to
more flexible variants such as Gaussian Process Regression
(GPR). The common goal behind each of these methods is
to learn an accurate and general mapping from some random
input vector ~X to a random output vector ~Y . To learn this
mapping, ~X 7→ ~Y , a regression method would operate on a
set of training examples (~xi, ~yi), resulting with a regression
function ~y = h(~x). If one wants, however, to invert this
function (assuming an inverse exists over some desired range
of ~y values), and obtain the function ~x = h−1(~y), the
regression method must typically be re-applied to a set of
training examples in which ~xi and ~yi are swapped.

This illustrates one of the weaknesses of a regression-
only approach to learning associations between variables:
the learned relationship is unidirectional. We believe that a
powerful technique for overcoming this limitation involves
the combination of probability density estimation and regres-
sion.

Formally, a regression function is defined in probabilistic
terms as the expected value of some random vector, given a
specific value of a different random vector:

~y = h(~x) = E[Y | X = x]. (1)

If the representation of the joint probability density by which
these random vectors are distributed is appropriately chosen,
the calculation of this conditional expectation is relatively
inexpensive, and can be a viable alternative to standard re-
gression methods that directly estimate a regression function
from training examples.

As a simple example, if we have two random variables,
U and V , which we wish to know the relationship between,
we can estimate the joint probability density fU,V (u, v) by
any number of density estimation techniques. In so doing,
the relationship between these variables has been captured,
and one can calculate either of the two possible regression
functions

u = h(v) = E[U | V = v] =
∫
u fU |V (u | v) du, (2)

v = h−1(u) = E[V | U = u] =
∫
v fV |U (v | u) dv (3)

where the relationship between a conditional density function
and a joint density function can be written as

fY |X(y | x) =
fY,X(y, x)∫
fY,X(y, x) dy

. (4)

Equations (2) and (3) are equally valid when U and V are
random vectors.

We have successfully applied this approach to a number
of problems. The probabilistic representation we use, which
we have called the Dynamic Gaussian Mixture Model, is
introduced in the next section. Following this, a method
based on work done by Sung is presented which is used for
deriving regression functions from a joint probability density
[1]. Finally, we report on the results of three problems to
which this regression technique has been applied.

II. DYNAMIC GAUSSIAN MIXTURE MODEL

We have developed a set of learning algorithms for online
and offline density estimation using an extended version of
the standard Gaussian Mixture Model. This extended model
is called a Dynamic Gaussian Mixture Model (DGMM)
because of the way in which the number of Gaussian
components in the model can vary dynamically to effectively
capture the relevant features of an estimated joint probability
density.

A DGMM represents a density function p(~x), as a
variable-sized set of “weighted Gaussian” pairs,

G ≡ {(g1(~x), w1), (g2(~x), w2), . . . , (gm(~x), wm)},

such that

p(~x) =
m∑

i=1

ŵigi(~x), (5)
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where gi(~x) is a multivariate Gaussian distribution:

gi(~x) = f
(i)
~X

(~x) ∼ N (µi,Σi), (6)

and

ŵi = wi /

m∑
k=1

wk. (7)

While the online estimation algorithm is discussed in detail
in the context of robot motion modelling in [2], we use
an offline algorithm for the experiments presented in this
paper. Briefly, the offline method that was used involves
generating Gaussian components for each training example,
and subsequently smoothing the model through a merging
process in which pairs of similar Gaussians are merged into
a single representative Gaussian.

III. DGMM BASED REGRESSION

In order to calculate a regression function from a DGMM
density representation, a method called Gaussian Mixture
Regression (GMR) proposed by Sung was used [1]. It is
a direct application of (1) to GMMs, taking advantage of the
elegant mathematical properties of the Gaussian function.
By using Gaussian functions as mixture components, the
calculation of marginal and conditional probabilities required
for the regression function becomes trivial, requiring little
computational effort.

IV. EXPERIMENT AND RESULTS

A. Simultaneous Learning of the Forward and Inverse Mo-
tion Models of the SCORPION robot

Learning the motion model of legged robots is challeng-
ing due to the complex kinematics of the robot and the
complexity of the interaction it makes with the environment
during locomotion. Initial experiments were performed with
the SCORPION robot [3] to test the extent to which a joint
probability density of poses and commands could capture
the robot’s forward and inverse motion models. The pose
of the robot was measured using a motion capture system
installed in our laboratory. The experimental environment
is a horizontal laboratory floor surface. The pose of the
robot includes the Cartesian coordinates (x, y) and heading
of the robot θ. The robot’s command space is the Cartesian
product CT = F × L × T , where F = {−0.8, 0, 0.8},
L = {−0.8, 0, 0.8} and T = {−0.8, 0, 0.8}. The set F
stands for forward-backward movements with the maximum
and minimum values of 1 and -1 respectively, and the set L
stands for lateral left-right movements with the maximum
and minimum values of 1 and -1 respectively. Similarly,
the set T stands for left-right rotations with the maximum
and minimum values of 1 and -1 respectively. We sent
the SCORPION robot random commands from the command
space CT and recorded the changes in pose of the robot.
In the experiment, we gave equal probabilities to all of the
commands, and on average each command is repeated (non-
consecutively) five times on the robot. We then built a joint
probability density over (command, change in pose) tuples.

1) Extracted Forward Motion Model: In order to validate
the learned joint probability density, we first extracted the
expectation function of the change in pose given a command.
The function was then used to estimate the pose of the
robot over 50 timesteps in a separate experiment to assess
its prediction quality. The expectation function represents the
learned forward model. Figure 1 shows the result we obtained
after we used this motion model to estimate the robot’s pose.
From the figure, it can be seen that the forward motion model
predicts the robot’s position relatively well.
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Fig. 1. Performance of the motion model in estimating the pose of the
SCORPION robot on a flat surface: (a) pose estimation in the x-direction vs.
timesteps. (b) pose estimation in y-direction vs. timesteps, and (c) heading
estimation vs. timesteps.

2) Extracted Inverse Motion Model: The inverse motion
model was also extracted from the learned joint probability
density. It maps the change in robot pose to a command to be
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sent to the robot. This model was used to control the robot in
a closed loop manner to traverse a figure-8 shaped trajectory.
Waypoints were sampled from the trajectory and the nearest
waypoint to the current position of the robot was used to
calculate the necessary change in pose. The inverse motion
model was then used to determine which command to send
to the robot, given the necessary change in pose. Figure 2
shows the results of using the inverse motion model in this
way for trajectory following. As can be seen in the figure, the
robot is able to follow the trajectory reasonably well. Along
the target trajectory where the curvature is high, the robot
tends to execute commands having larger rotational effects.

Fig. 2. The inverse motion model used in trajectory following. The figure
shows the robot while following a trajectory, and the arrow in the figure
shows the current orientation of robot.

B. Performance of DGMM on Classification and Prediction
Problems

We have further tested the DGMM/GMR method in the
areas of classification and prediction, using the Two-Spiral
and Mackey-Glass time-series standard benchmark problems,
respectively.

1) Two-Spiral Benchmark: The standard Two-Spiral
benchmark was chosen to investigate the performance of the
method on classification problems [4]. In this experiment,
we learned the joint probability density function of the coor-
dinates of a point on a spiral (x, y), and the class defined by
the spiral on which the point lies. Since there are two spirals,
a boolean integer in the set {0, 1} is used to represent the

class. A regression function E[C|X = x, Y = y] is extracted
form the joint probability density, where C is a continuous
value random number. The output of the regression function
is thresholded to determine the class of a point at the
coordinates (x, y). Starting with Gaussians centered at each
point and associated class, the merging procedure is run a
number of times until the minimal number of Gaussians that
resulted in a regression function with error free classification
is obtained. Figure 3 shows the Gaussians of the joint
probability density fX,Y (x, y) after the merging procedure
was applied and the class variable is marginalized out. The
ellipses represent equi-probability contours of the Gaussians
used to form the joint probability density fX,Y (x, y). Note
that each Gaussian has its own weight and the weighted sum
of the Gaussians represents the joint probability density given
by

fX,Y (x, y) =
M∑
i=0

ŵiφi, (8)

where M is the number of Gaussians in the mixture, ŵi is
a mixing coefficient and φi is a Gaussian N (µi,Σi). This
initial test of the DGMM/GMR method on this classification
problem suggests its suitability for classification tasks.
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Fig. 3. Density estimation results on Two-Spiral benchmark. Each ellipse
represents an equi-probability contour of a Gaussian component of the joint
probability density fX,Y (x, y).

2) Mackey-Glass Time Series Benchmark: An experiment
described in [5] using the chaotic Mackey-Glass equation
was performed with the DGMM/GMR method to investigate
the suitability of the method for prediction problems. The
task is to predict the time series given by

x(t+ 1) = (1− a)x(t) +
bx(t− τ)

1 + x10(t− τ)
, (9)

where a = 0.1, b = 0.2, τ = 17 and x(0) = 1.2.
The function to be approximated has the form x(t + 6) =
f(x(t), x(t − 6), x(t − 12), x(t − 18)). The DGMM/GMR
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method is trained on 1000 samples of f where 124 ≤
t ≤ 1123, and validated on another 1000 samples of f
where 1124 ≤ t ≤ 2213. Again, the joint probability
density is learned first, and afterwards a regression function is
extracted from the joint probability density that approximates
the function f . Figure 4 shows the performance of the
DGMM/GMR method in predicting the sequence for the
validation set.
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Fig. 4. Prediction performance of the DGMM/GMR method on the
Mackey-Glass benchmark. The line with points represents the trajectory
generated using this method.

V. DISCUSSION

Though the computational requirements of the
DGMM/GMR approach have not been addressed in
this paper, the experiments presented have shown that
the approach is a viable alternative to standard regression
methods in typical application domains. By learning a joint
probability density as an intermediate step to deriving a
regression function, every observable relationship between
variables is captured, regardless of its causality or lack
thereof. This makes the joint probability density flexible
in the ways it can be used, in contrast to a regression
function, which only represents a single relationship
between variables.

In the future, we will provide an in-depth analysis of the
presented experiments, further validate the DGMM/GMR ap-
proach on different robot learning scenarios, and compare its
computational requirements with those of standard regression
methods.
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Compiling Neural Networks for Fast Neuro-Evolution

Nils T Siebel, Andreas Jordt and Gerald Sommer

Abstract— Any neuro-evolutionary algorithm that solves
complex problems needs to deal with the issue of computational
complexity. We show how a neural network (feed-forward,
recurrent or RBF) can be transformed and then compiled in
order to achieve fast execution speeds without requiring ded-
icated hardware like FPGAs. In an experimental comparison
our method effects a speedup of factor 5–10 compared to the
standard method of evaluation (i.e., traversing a data structure
with optimised C++ code).

I. INTRODUCTION

The use of Artificial Neural Networks (also simply “neural

networks”) for robotics is difficult. While neural networks

have been the object of research for several decades, there

is still no straightforward way to construct a neural network

that solves a given robotics task. In many cases creating a

good network requires a great deal of domain knowledge

and manual intervention, e.g. to determine the network’s

topology (“structure”), or to adjust the parameters of one’s

learning algorithm (“hyperparameters”) to the given problem

and data. Even with manual intervention and tuning, this may

still be difficult or impossible if the problem is non-trivial.

Much of the past research work has been solely on learning

the parameters of a neural network; there are few construc-

tive algorithms for a neural network’s topology. Also, once a

topology is found the search for optimal parameters is a dif-

ficult due to numerical ill-conditioning [1] and the so-called

“curse of dimensionality” [2]. Recent neuro-evolutionary

mehods aim to overcome these problems by evolving both

the structure and the parameters of neural networks by

evolutionary algorithms [3], [4], [5], [6]. Evolutionary algo-

rithms are known for their good convergence even in difficult

optimisation problems, and successful networks have been

constructed by these methods (idib.). However, their main

disadvantage is one inherent in all evolutionary methods:

They require many trials (and thereby, evaluations of the

neural network) to find a solution to any non-trivial problem.

In this article we present a method to speed up the

evaluation of neural networks by first transforming them

into a form that requires no branching, then compiling it

into binary machine code (32- or 64-bit x86 architecture

using SSE). The compiler works for feedforward, recurrent

and radial basis function (RBF) networks, or any hybrid

network composed of these components. The code does

not require re-compilation if only network parameters are
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changed, which speeds up the search for optimal parameters

without the need to re-compile the network.

The remainder of the article is organised as follows.

Section II introduces the terminology and describes related

work. Details on our neuro-evolutionary method EANT2 can

be found in Section III. The neural network compilation

approach is described in Section IV and validated by ex-

periments in Section V. Section VI concludes the article.

II. PRELIMINARIES AND RELATED WORK

A. Neural Network Learning Paradigms

An artificial neural network can be regarded as a function

f that maps data points/vectors x from an input space

X ⊆ IRn to vectors y in an output space Y ⊆ IRm,

i.e. f : X → Y, x 7→ y. For a neural network with a fixed

topology this function f is parameterised by the parameters

of the network, e.g. the values of synaptic weights. Training

a neural network means to optimise these parameters such

that the network is suitable for a given task. For this the

optimisation process needs a measure of this suitability of

given parameters, usually expressed by an error or cost

function which is to be minimised during training. The

main training/learning paradigms for neural networks are

supervised learning, unsupervised learning and reinforcement

learning.

1) Supervised Learning: Here a set of example data pairs

{(xi, yi)}i, xi ∈ X, yi ∈ Y ∀i, is given. The goal is to find a

function f : X → Y (here, a neural network) that describes

the mapping implied by the data points. The cost function is

related to the mismatch between our mapping and the data.

In classification problems, yi is the label of the point xi.

The most commonly used cost function is the mean-

squared error (MSE), i.e. the mean squared difference be-

tween the network’s output, f(xi), and its target value

yi, over all example pairs. A popular algorithm for the

minimisation process is the backpropagation algorithm [7,

chap. 4], which is essentially optimisation by stochastic

gradient descent.

2) Unsupervised Learning: As in the supervised case, we

are given data examples {xi}i, but not as pairs {(xi, yi)}i.

One form of unsupervised learning is clustering, further

examples are the estimation of statistical distributions of data

and blind source separation (e.g. based on Independent Com-

ponent Analysis, ICA). Examples for unsupervised learning

approaches by neural networks are Self-Organising Maps

(SOM) and Adaptive Resonance Theory (ART) systems.

3) Reinforcement Learning: In reinforcement learning

scenarios, data x is usually not given. Instead, the algorithm

evaluates a candidate solution by direct interaction with the
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environment. One example would be a robot controller. A

given network can move the robot at each time instance

t by an action yt which is based on sensor data xt. The

environment generates an observation ot and often also an

instantaneous cost C(ot), according to the (usually unknown)

dynamics of the system. The aim is to discover a policy for

selecting actions that minimises a measure of a long-term

cost, i.e. the expected cumulative cost.

Reinforcement learning differs from supervised learning

in that correct input/output pairs are never presented, nor are

sub-optimal actions explicitly corrected. While this lack of

information makes reinforcement learning more flexible in its

application it also means that the algorithm has no immediate

hint in which direction to move in a (possibly very high-

dimensional) search space. Therefore one focus is always

on performance, which involves finding a balance between

exploration (of uncharted territory) and exploitation (of cur-

rent knowledge). The efficiency of a reinforcement learning

algorithm can be measured in the number of evaluations of

the cost function (“function evaluations”) it needs to find a

good solution. In the neuro-evolutionary methods considered

in this article (but not all) an evolutionary algorithm is

used for neural network training. Every function evaluation

requires at least one, and sometimes very many, evaluations

of the neural network. On the other hand, these methods can

help to avoid local minima [8] for which backpropagation

methods are well-known [9].

B. Related Work: Neuro-Evolution

Up to the late 90s only small neural networks have been

evolved by evolutionary algorithms [10]. According to Yao,

a main reason is the difficulty of evaluating the exact fitness

(negative cost) of a newly found structure: In order to fully

evaluate a structure one needs to find the optimal (or, some

near-optimal) parameters for it. However, the search for good

parameters for a given structure has a high computational

complexity unless the problem is very simple (ibid.).

In order to avoid this problem most approaches evolve the

structure and parameters of the neural networks simultane-

ously. Examples are EPNet [11], GNARL [3] and NEAT [4].

EPNet uses a modified backpropagation algorithm for pa-

rameter optimisation (a local method). Mutation operators

for searching the space of neural structures are addition and

deletion of neurons and connections (no crossover is used).

EPNet has a tendency to remove connections/nodes rather

than to add new ones. This is done to counteract “bloat” (i.e.

ever growing networks with only little fitness improvement;

called “survival of the fattest” in [12]). GNARL also does

not use crossover during structural mutation. However, it

uses an evolutionary algorithm for parameter optimisation.

Both parametrical and structural mutation use a “tempera-

ture” measure to determine whether large or small random

modifications should be applied—a concept known from

simulated annealing [13]. In order to calculate the current

temperature, the algorithm needs some knowledge about the

“ideal solution” to the problem, e.g. the best fitness expected

to be reached.

NEAT, unlike EPNet and GNARL, uses a crossover

operator that allows to produce valid offspring from two

given neural networks. It works by first aligning similar

or equal subnetworks and then exchanging differing parts.

Like GNARL, NEAT uses evolutionary algorithms for both

parametrical and structural mutation. However, the proba-

bilities and standard deviations used for random mutation

are constant over time. NEAT also incorporates the concept

of speciation, i.e. separated sub-populations that aim at

cultivating and preserving diversity in the population [12,

chap. 9].

C. Related Work: Speeding up Individual Evaluation in

Evolutionary Algorithms

1) Neural Networks in Dedicated Hardware: Most pub-

licised work on speeding up neural network evaluation is

through the use of hardware on which neural networks

are evaluated, and sometimes also trained. One main idea

is to implement the parallel data processing nature of

neural networks in reconfigurable circuits (such as “Field

Programmable Gate Arrays”, “FPGAs”) that offer massive

parallelism through their architecture.

Cabestany et al. discuss the status of some of the first ap-

proaches to implement artificial neural networks in hardware

in the late 90s [14]. They conclude that at the presented stage

(1996) no implementation exists that enables a feasible use

of existing systems in industry. One of the reasons given is

the lack of a proper software that facilitates the co-operation

and data exchange between host computer and the dedicated

hardware in a manner suitable for neural networks.

Moerland and Fiesler discuss technical limitations of hard-

ware for the implementation of neural networks and suitable

training algorithms [15]. These limitations are quantisation

effects (stemming from limited numerical precision of net-

work parameters in hardware implementations) and what

they call “hardware non-idealities” such as non-uniformities

found on analogue hardware. While the latter effects are no

longer relevant on modern implementations that use digital

circuitry the former still are. The authors conclude that a

precision of 16 bits for network weights is sufficient. They

also make a case for the integration of the training algorithm

into the hardware program and suggest suitable training algo-

rithms, since back-propagation and other standard methods

cannot be easily implemented in FPGAs.

Zhu and Sutton discuss the more recent developments in

an FPGA-specific survey [16]. This includes the use of re-

configuration capabilities of FPGAs during training. Even

with newer hardware boards the authors still call the imple-

mentation of neural networks in FPGAs “challenging” due

to the multiplication-intensive nature of network evaluations.

Their conclusions are somewhat inconclusive but in line with

those given by the previous authors; in particular, they see

a requirement for specialised learning algorithms adapted to

the nature of FPGAs since traditional algorithms cannot be

implemented efficiently into FPGAs.

2) Binary Code in Genetic Programming: Nordin pro-

poses a different approach [17]. He develops algorithms by
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(a) Original neural network (b) Network in tree format

(c) Corresponding Linear Genome

Fig. 1. An example of encoding a neural network using a linear genome

genetic programming that are directly encoded in executable

machine code. The code is a fixed length program consisting

of 12 CPU instructions. Naturally, the execution speed of

this code is very high compared to an interpreted version of

the same instruction sequence, e.g. in LISP. Nordin reports a

speedup factor of approximately 1000. Even if the instruction

set (+,-,*,/), data access (number of variables) is fairly

limited, this is a very fast solution.

Harvey et al. evolve Java byte code with the help of

genetic programming [18], [19]. Their system, which they

call “bcGP” for “byte code genetic programming”, stores

individuals as member functions of Java class files (in

memory; each represents a population), which can be run

on a Java Virtual Machine (JVM). The instruction set uses

basic arithmetic operations (+,-,*,/) for regression tasks

and comparison operators for classification tasks. While the

authors call the performance of their system “efficient” they

also say that no speed comparison between byte code GP

and a corresponding high-level has been done. Considering

the code is run on a JVM, and with the overhead involved

in handling the class file it is probably not quite as fast

as Nordin’s direct machine code solution but may enable

a larger code complexity.

To our knowledge no publications exists on the subject

of machine code compilation of neural networks. While the

performance of genetic programming has been found to be

similar to that of neural networks on a range of problems [20]

the methods cannot easily be transferred.

III. OUR NEURO-EVOLUTIONARY METHOD:

EANT2

A. The Algorithm

EANT2, “Evolutionary Acquisition of Neural Topologies

Version 2”, is an evolutionary reinforcement learning system

that realises neural network learning with evolutionary al-

gorithms both for the structural and the parametrical part.

It is based on the previous method EANT [5] but uses

different algorithms for structural mutation and parameter

optimisation [21]. EANT2 represents neural networks and

their parameters in a compact genetic encoding, the “linear

genome”. It encodes the topology of the network implicitly
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Fig. 2. The EANT2 algorithm. Please note that CMA-ES has its own
optimisation loop which creates a nested loop in EANT2.

by the order of its elements (genes). The following basic

gene types exist: neurons, network inputs, biases and forward

connections. There are also “irregular” connections between

neural genes which we call “jumper connections”. Jumper

genes can encode either forward or recurrent connections.

Figure 1 shows an example encoding of a neural network

using a linear genome. The figures show (a) the neural

network to be encoded. It has one forward and one recurrent

jumper connection; (b) the neural network interpreted as a

tree structure; and (c) the linear genome encoding the neural

network. In the linear genome, N stands for a neuron, I for

an input to the neural network, JF for a forward jumper

connection, and JR for a recurrent jumper connection. The

numbers beside N represent the global identification numbers

of the neurons, x and y are the inputs coded by input genes.

A linear genome can be interpreted as a tree based program

if one considers all the inputs to the network and all jumper

connections as terminals.

Linear genomes can be evaluated, without decoding, sim-

ilar to the way mathematical expressions in postfix notation

are evaluated. For example, a neuron gene is followed by

its input genes. In order to evaluate it, one can traverse the

linear genome from back to front, pushing inputs onto a

stack. When encountering a neuron gene one pops as many

genes from the stack as there are inputs to the neuron, using

their values as input values. The resulting evaluated neuron is

again pushed onto the stack, enabling this subnetwork to be

used as an input to another neuron. Connection (“jumper”)

genes make it possible for neuron outputs to be used as input

to more than one neuron, see JF3 in the example above.

Together with bias neurons the linear genome can encode

any neural network in a very compact format; its length is

equal to the number of synaptic network weights.

The steps of our algorithm, shown in Figure 2, are

explained in detail below.

Initialisation: EANT2 usually starts with minimal initial

structures. A minimal network has no hidden layers or

recurrent connections, only 1 neuron per output, connected to
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some or all inputs. EANT2 gradually develops these simple

initial structures further using the structural and parametrical

evolutionary algorithms discussed below. On a larger scale

new neural structures are added to a current generation of

networks. We call this “structural exploration”. On a smaller

scale the current structures are optimised by changing their

parameters: “structural exploitation”.

Structural Exploitation: At this stage the structures in the

current EANT2 population are exploited by optimising their

parameters. Parametrical mutation is realised using CMA-ES

(“Covariance Matrix Adaptation Evolution Strategy”) [22].

CMA-ES is a variant of Evolution Strategies that avoids

random adaptation of strategy parameters. Instead, the search

area spanned by the mutation strategy parameters, expressed

by a covariance matrix, is adapted at each step depending on

the current population. CMA-ES uses sophisticated methods

to avoid problems like premature convergence and is known

for fast convergence to good solutions even with multi-modal

and non-separable functions in high-dimensional spaces

(ibid.). It has been first successfully applied to reinforcement

learning of neural network weights by Igel [8].

Selection: The selection operator determines which pop-

ulation members are carried on from one generation to the

next. Our selection in the outer, structural exploration loop is

rank-based and “greedy”, preferring individuals that have a

larger fitness. In order to maintain diversity in the population,

it also compares individuals by structure, ignoring their pa-

rameters. The operator makes sure that not more than 1 copy

of an individual and not more than 2 similar individuals are

kept in the population. “Similar” in this case means that a

structure was derived from an another one by only changing

connections, not adding neurons.

Structural Exploration: In this step new structures are

generated and added to the population. This is achieved

by applying the following structural mutation operators

to the existing structures: Adding or removing a random

subnetwork, adding or removing a random connection and

adding a random bias. New hidden neurons are connected to

approx. 50 % of inputs; the exact percentage and selection

of inputs are random.

B. Comparison with Other Methods

EANT2 is closely related to the methods described in

the related work section above. One main difference is

the clear separation of structural exploration and structural

exploitation. By this we try to make sure a new structural

element is tested (“exploited”) as much as possible before

a decision is made to discard it or keep it, or before other

structural modifications are applied. Another main difference

is the use of CMA-ES in the parameter optimisation. Further

differences of EANT2 to other recent methods, e.g. NEAT,

are the absence of algorithm parameters that need to be

tuned to the problem (the method should be as universal as

possible) and the explicit way of preserving diversity in the

population (unlike speciation). More details on the algorithm

and an experimental comparison to NEAT on a robot learning

task can be found in [6].

Linear Genome
(evaluation needs parsing and extra branching)

?
Serialisation

Serial Representation
(evaluation needs parsing but no extra branching)

?
Compilation/Mapping

Binary Genome
(machine code without conditionals or branching)

Fig. 3. The compilation process where a Linear Genome is transformed
into the Binary Genome (machine code).

One main feature of EANT2 is that the structure remains

fixed during structural exploitation. During this time the net-

work is evaluated thousands of times (depending on the given

task and fitness function, sometimes even millions of times)

before it is changed again during structural exploration. This

motivated us to examine how these many recurring sequences

of operations (same sequence of additions, multiplications

and activation function evaluations) on differing data could

be sped up.

IV. COMPILING NEURAL NETWORKS

The evaluation of a neural network, whether it be stack

based, tree based or based on any other complex structure, is

equivalent to the execution of a fixed set of operations. They

usually include recursive (or other) evaluation of neuron

(output) values used as input to other neurons as well as other

non-sequential operations. When these steps are executed this

results in several if statements and branches in the ma-

chine code, e.g. in the compiled C++ code that implements

network evaluation by traversing the relevant structures in a

NeuralNetwork class. From a computational point of view

branches usually imply a speed penalty at the CPU level,

where any branch that was not predicted by CPU internal

mechanisms usually means that the instruction pipeline needs

to be flushed and rebuilt. Further slowdowns occur when the

machine code in the branch is not contained in the instruction

(memory) cache. As a result of these issues is a considerate

overhead in the number of CPU instructions and wait times

is introduced by the non-serial nature of the traversal through

the neural network representation in memory. This is all

in addition to the actual parsing, which usually involves

switch/case statements e.g. when determining the type of a

neuron input (network input, bias, output of other neuron,

simple connection, recurrent connection etc.).

The goal in our network compilation is to analyse the

operations needed for the evaluation of a neural network,

log them and discard those operations to maintain the struc-

tural overhead, i.e. object management, conditionals, casts,

function calls, jumps etc. The logged set of operations is

then coded in binary (machine) code. To achieve this, the

mathematical operations that are necessary for the calculation

of the output values are first extracted from the network

in a step we call Serialisation. Afterwards these operations
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are translated into processor opcodes (Compilation). For

technical reasons explained below, these opcodes need to be

mapped into a data area that allows their execution (Memory

Mapping). The result of this process is then called the “binary

genome”. Figure 3 illustrates this process.

A. Serialisation

Serialisation is basically done by recursively evaluating

the network and at the same time protocolling the neuron

dependencies. Assume for a moment that no recurrent con-

nection is present. Then an ordered list (L,<) of neurons

can be defined such that

∀n,m ∈ L, n 6= m : n < m ∨ m < n, (1)

where a neuron n can be directly calculated from the

elements of {m ∈ L|m < n}. The existence of such a list is

given by the existence of an evaluation of the neural network.

Obviously, all input neurons are on the bottom of the

ordered list. If a recurrent connection is present, it will

be handled like an input neuron with value 0 in the first

evaluation and the preceding neuron value in the following

evaluations.

In the given pseudo-code, In denotes the list of input

neurons and Out the list of output neurons. For every neuron

n, n->incident[] is the list of incident neurons, i.e. the

list of neurons its value is calculated from. For every list

let ->size denote the number of elements in the list. The

generation of the complete list L is accomplished by the

following algorithm:

function evaluate(n, list)

{

for (i := 1 to n->incident->size)

if (n->incident[i] is not in L)

evaluate (n->incident[i],L);

L->push(n);

return L;

}

function generate_list()

{

L := empty;

for (i := 1 to In->size)

L->push(In[i]);

for (i := 1 to Out->size)

L := evaluate(Out[i], L);

return L;

}

It can easily be seen that after execution L contains every

neuron that is needed to calculate the output neuron values

in the defined order. This order now allows to generate an

ordered set of instructions needed to evaluate the network.

Let a be the activation function. Each neuron value

v(n), n ∈ L, is calculated by the weighted sum of its incident

neurons and the activation function:

∀n ∈ L : v(n) = a





|i(n)|
∑

j=0

w(n, i(n)j) · v (i(n)j)



 , (2)

where i(n) is the list of neurons incident to n and w(n,m)
denotes the corresponding weight for each incident neuron

m ∈ i(n) to n. The network evaluation is now simplified

to the iterative application of the following steps (for each

neuron):

1) pop the first non-input neuron item from the list of

neurons

2) add up the weighted inputs of that neuron

3) apply the activation function, and

4) store the neuron value.

B. Compilation

The generation of the corresponding opcode is now

straightforward except for the activation function. In most

cases this function is not available as a machine instruction

(e.g. hyperbolic tangent). Since implementation of such

functions can be tedious, the usage of the algorithm provided

by the C++ libraries is expedient. Such a function call is easy,

if the calling convention as well as the position to jump at

is known. This is not the case, if the function is a member

function or is defined via templates. In this case a reliable

jump point has to be created manually in the C++ code,

forwarding the program jump to its actual destination.

In the following the 32-bit case without SSE support is

described. For a better readability assembler commands are

used to represent the opcode (since FADD is easier to read

than 0xDC 0xC0).

Before a program is generated, memory is allocated to

store the current neuron values and the current weights. This

way, the memory addresses, the opcode has to access, are

fixed and can be “hard coded” into the opcode, so a runtime

calculation of memory addresses is not necessary.

To prepare the CPU for the evaluation code, three things

have to be done:

1) back up the register that is used

2) pass the jump destination address of the activation

function

3) back up the floating point unit and floating point stack1.

The first two tasks are accomplished directly by the C++

assembler framework, (which is used to actually jump from

C++ code into the generated opcodes), if the usage of certain

registers is proposed. The activation function address can be

written directly into a register by the embedded assembler.

The floating point units state can be saved by calling:

fldsv [backup_addr]

An appropriate memory space has to be allocated in advance.

After evaluation, the unit state and the stack can be restored

by executing:

1The floating point stack is part of the floating point unit of the processor.
Floating point values are usually not stored in registers like integer values
but on a register stack.
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fldrst [backup_addr]

These commands are the first and the last commands in every

generated program.

The calculation of a neuron value starts by pushing a zero

onto the floating point stack as the current weighted input

sum:

fldz

For every incident neuron connection first the correspond-

ing neuron value is pushed onto the stack followed by

a command that multiplies the top value from the stack

with a value fetched from memory, which, in this case, is

the corresponding weight. This operation is followed by an

operation that pops two values from the floating point stack

and pushes their sum onto the stack again. Now the new sum

is on top of the stack and the next incident neuron can be

evaluated:

fld [neuron_addr]

fmul [weight_addr]

fadd

After regarding every incident neuron value this way, the

activation function is called and the resulting value is stored

in the neuron array:

call eax

fst [neuron_addr]

After every neuron is calculated this way, the generated code

jumps back to its location it was called from:

return

The neuron value array now contains all calculated values.

Because of the ordered evaluation, each calculation only

accessed already calculated neuron values.

C. Memory Mapping

Execution of generated data is an activity every modern

operation system is intended to terminate immediately due to

security reasons. The execution of data memory is a strong

indication of a buffer overflow, which could be exploited

by malicious software, or maliciously crafted data. Most

Unix systems have been performing such checks via software

for many years. The recent introduction of the NX-bit—

a hardware solution to prevent the execution of program

generated data—brought an even more powerful execution

prevention, i.e. the execution of generated data is impeded

by the system in every way possible.

The realtime compilation and execution of EANT2 net-

works is based on a trick applying the I/O memory mapping

functionality of Unix systems. I/O memory mapping is

usually used to load files or other peripheral device data

directly into memory to circumvent the standard I/O data

loading behaviour. Such data is loaded completely into a

dedicated memory area and is then mapped onto a memory

address the executed program can access. A file can either be

mapped as read-only-executable or as read-write-accessible

Network size 40 84 130

Linear Genome 5445.7 ms 18796.7 ms 30171.3 ms

Binary Genome 1037.9 ms 1552.4 ms 2042.3 ms

Compilation time 8.8 ms 16.0 ms 24.2 ms

TABLE I

EXECUTION TIMES DEPENDING ON NEURAL NETWORK COMPILATION

memory. What EANT2 does is to map a virtual file twice

into memory, once in executable mode and once in read-write

mode. These two file mappings are presented to EANT2 by

the system as two different memory locations, but a memory

access will be resolved to the same file buffer location in the

physical memory. To execute a neural network, the generated

opcode is copied to the read-write memory location and is

then executed by jumping (via embedded assembler) to the

execution-memory. A slow down due to hard disk access

does not exist because the file is “fully buffered” in the RAM,

so no byte of the generated data is actually written to disk.

V. EXPERIMENTS

To get an idea about the speed up, measurements of

several evaluations using networks of different sizes were

performed. All results are compared to the standard evalua-

tion time of the linear genome. For a correct interpretation

of this comparison it is important to note that the linear

genome structure is already designed for efficient evaluation.

The stack based, linear representation (see Section III-A)

allows a straight evaluation in one pass and avoids repeated

evaluations of sub-networks through a caching mechanism.

The C++ code was compiled using the GNU C++ compiler

with the “-O3” optimisation flag. The time measurements

considered are the CPU times for 1,000,000 evaluations,

which in our robotics experiments is an average number of

evaluations for the parameter optimisation in EANT2. The

tests were performed on an AMD Athlon 3000+ GNU/Linux

system, using GCC version 4.3.3. Measurements of the

binary genome’s compilation time and the 1,000,000-fold

evaluation of networks of size 40, 84 and 130 (number of

synaptic connections) are given in Table I.

It can be seen that the execution speed of the “binary”

(compiled) genome if about 5–10 times faster for typical

networks, and increases with the network size. It can also be

seen that the compilation time is insignificant compared to

the speed gained by the binary evaluation if many evaluations

are performed.

In practice, the fitness function that is used by the opti-

miser does not only consist of the network evaluation but

also the interpretation of the network output. Depending on

the task at hand and its implementation, the speed advantage

may of course be more or less significant for the overall

time needed to calculate a network’s fitness value. In one

of our practical applications of EANT2, where a robot

movement and image acquisition is simulated after each

network evaluation, the overall speed increased by a factor

of 3–4 through the introduction of the binary genome. Over

2nd International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2009)
St. Louis, Missouri, USA, October 15 2009

28



time, as the networks increase in size, the speed advantage

becomes more pronounced.

VI. CONCLUSIONS

We have presented a method to speedup the calculation

of a neural network’s output by transforming the internal

representation into binary machine code. This helps to alle-

viate one problem neuro-evolutionary algorithms still have

nowadays: they are slow, i.e. they need many evaluations of

the fitness function/neural networks before they find a good

solution to a robot learning problem.

In the evolutionary process that optimises the network’s

parameters the network only needs to be “compiled” once;

new parameter values are taken from a given array of current

values.

Our experiments have shown that the compilation speeds

up the evaluation time of a neural network by a factor of

approximately 5–10, depending on the network size. With

larger networks, the speedup factor is also larger.
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Abstract—This paper presents a fuzzy logic controller self 

tuning using Self Organizing Map neural network (SOM) for 

near the optimal time path planning for a mobile robot to avoid 

obstacles in unknown environments. A SOM neural network is 

applied to modify the input and output membership functions of 

the fuzzy controller automatically. A Matlab application, Kiks 

II, is used to simulate a Khepera II robot. Also, this approach is 

implemented by Khepera II robot. It is also shown that the 

proposed method outperforms the FLC approach. 

I. INTRODUCTION 

Over the last few years, a number of studies were reported 

concerning machine learning, and how it has been applied to 

help mobile robots to improve their operational capabilities. 

One of the most important issues in the design and 

development of intelligent mobile system is the navigation 

problem. This consists of the ability of a mobile robot to 

plan and execute collision-free motions within its 

environment. However, this environment may be imprecise, 

vast, dynamical and either partially or non-structured [4]. In 

such environment, motion planning depends on the sensory 

information of the environment, which might be associated 

with imprecision and uncertainty. Thus, to have a suitable 

motion planning scheme in a cluttered environment, the 

controller of such kind of robots must have to be adaptive in 

nature. Recently, [2] have made an extensive survey on the 

navigational schemes of mobile robots moving among 

dynamic obstacles. 

Soft computing includes fuzzy logic, genetic algorithm, 

neural network and their different combinations [2, 3] and it 

can solve such complex real-world problems within a 

reasonable accuracy. The computational complexity of such 

methods is also expected to be low, due to their heuristic 

nature.  

Since artificial neural networks (ANN) have the ability to 

learn the situations, many investigators have successfully 

applied the neural network [4, 5 and 6] to develop the model 

related to the navigation problem of a mobile robot. Janglová 

[4] used two NNs, one to determine the free space using 

ultrasound range finder data and the other to find a safe 

direction for the next robot section of the path in the 

workspace while avoiding the nearest obstacles. Kian Hsiang 
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Low [5] used self-organizing neural network to perform fine, 

smooth motor control that moves the robot through the 

checkpoints. Botelho [6] used Boolean NNs such as RAM 

and GSN models for controlling of robot navigation. Since 

these NNs have high speed processing, the decision rate are 

increased. 

We know that NNs have the ability to learn the situations, 

but with some neural networks, knowledge representation 

and extraction are difficult.  

Fuzzy systems have the ability to make use of knowledge 

expressed in the form of linguistic rules, thus they offer the 

possibility of implementing expert human knowledge and 

experience. Their main drawback is the lack of a systematic 

methodology for their design. Usually, tuning parameters of 

membership functions is a time consuming task. Genetic 

Algorithm or Neural network learning techniques can 

automate this process, significantly reducing development 

time, and resulting in better performance. Kun Hsiang Wu 

[8] used a genetic-based adaptive fuzzy controller to 

navigate the robot. 

In this paper is used fuzzy logic controller (FLC) for solving 

the navigation problems of a mobile robot and for tuning 

parameters is used SOM that the parameters are tuned 

automatically. The performance of this approach, to generate 

collision-free path of a robot, are compared with FLC. 

The organization of the paper is as follows: section 2 

describes the fuzzy logic controller (FLC) approach for path 

planning. Self tuning membership functions using SOM 

describes in section 3. Simulation and implementation results 

will be included in section 4. Section 5 will summarize our 

conclusions. 

II. FUZZY LOGIC CONTROLLER (FLC) 

In actual navigation, information of the input variables 

collected by using the camera or sensor might be imprecise 

in nature [2]. Thus, fuzzy logic controller could be a 

potential candidate for solving this problem. Two major 

approaches FLC are Mamdani Approach and Takagi and 

Sugeno Approach. 

In Mamdani Approach, the condition and action variables of 

the FLC are expressed in terms of membership function 

distributions. Figure1 shows the membership function 

distributions of both the input and output variables. The 

input variables are distance and angles that explain 

condition`s obstacle to robot. The range of distance is 

divided into three linguistic terms, namely Near (NR), mid 

Path Planning for a Mobile Robot Using Self Tuning Fuzzy Logic 

Controller 
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(MID) and far (FR). The range of angle is divided into five 

terms: left (LT), ahead left (AL), ahead (AH), ahead right 

(AR) and right (RT). For output variables, five linguistic 

terms are considered: back slow (BS), zero (Z), forward slow 

(FS), forward mid (FM) and forward fast (FF). 

In Takagi and Sugeno Approach, the membership function 

distributions of the input variables have been assumed to be 

the same as shown in Fig. 1, whereas the outputs may be 

expressed like the following: 

 

IF A1 AND B1, THEN z1=a1 x +b1 y +c1 & z2=a2 x +b2 y +c2 

 

Where A1, B1 are labels of fuzzy sets, x and y are input 

variables, z1 and z2 are output of FLC and a1, b1, a2, b2 are 

the coefficients of the input variables and c1, c2 are the 

constants. With three choices for distance and five choices 

for angle, there could be 3 × 5 or 15 possible combinations 

of two different condition variables. Thus, there is a 

maximum of 15 rules present in the rule base that are shown 

in Table I. 

FLC structure has 5 stage or layer. The first layer transmits 

input values to the next layer using linear transfer function. 

The next layer is the fuzzification layer, in which the 

membership function values of the input variables are 

determined corresponding to input conditions. Third layer is 

the layer of rule base that defines the fuzzy rules. The output 

of every neuron in this layer is the multiplication of their two 

incoming signals: 

 

                                    O3n = O2i × O2j                             (1)  

Where O3n is the output of the neuron n in layer 3 and O2i, 

O2j are the outputs of the neurons i, j in layer 2, respectively. 

 

 

  

 

 

TABLE I 

RULE BASE OF THE FLC FOR DITERMINING VELOCITY OF THE 

WHEELS. 

Angle 

ω1 

Angle 

RT  AR  AH  AL  LT   

FF  FF  BS  FS  FF  NR  

FF  FF  BS  FS  FF  MID  

FF  FM  Z  BS  FF  FR  

 
 

ω1= the speed of left wheel, ω2= the speed of right wheel 
 

4th layer is the layer of Consequence, which identifies the 

fired rules for a set of inputs. The connecting weights 

between the 4th and 5th layers indicate the membership 

function distributions of the output variables. Once the 

membership function distributions are known, this layer 

calculates the output of all the fired rules. 

The last layer is defuzzification layer, which converts the 

fuzzified output to its corresponding crisp value. A center of 

sums method is adopted for defuzzification. The final output 

Oi of the ikth neuron lying in this layer can be expressed as 

follows: 

 

                
ik ik

k

i

ik

k

A M

O

A

=
∑

∑

                                   (2) 

 

Where Aik and Mik are the area and center of area for kth 

fired rule of ith output, respectively. 

The performance of an FLC is influenced by its knowledge 

base (KB). Thus, it is essential to tune the KB of the fuzzy 

logic controller to get a better performance. Since the tuning 

can be viewed as an optimization process, either a neural 

network (NN) or a genetic algorithm (GA) offers a 

possibility to solve this problem. Here we use Self 

Organizing Map neural network (SOM) for tuning KB. 

III. SELF TUNING FLC 

The aim of this paper is to tune the centers of membership 

functions (MFs) automatically. The Self Organizing Map 

(SOM) is an unsupervised neural network. Thus, could be 

RT  AR  AH  AL  LT   

FF  FS  FF  FF  FF  NR  

FF  FS  FF  FF  FF  MID  

FF  Z  FM  FS  FF  FR  

 
 

 

Fig. 1. Membership function distributions for input and output 

variables of the FLC 

. 

 

     ω2 
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useful for reaching this aim. Topology of SOM neural 

network is shown in Fig. 2. 

The algorithm has two steps, each step having different 

method. The centers of input membership functions are 

tuned first. After, tuning of output membership functions is 

processed.  

 

 

 

 

Fig. 2. Topology of SOM neural network 

 

A. Tuning of input membership functions 

 

Tuning of input MFs is begins by feeding the input 

variables of FLC to SOM networks. The neuron whose value 

has smallest distance with the input is selected as winning 

neuron. The winning vector and its neighbors are updated by 

 

( ) ( ) ( ) ( )w t  w t 1   [ hv t  (x(t) - w t 1 )]= − + α −        (3) 

 

Where w(t) is the weight vector of neurons, x(t) denotes the 

input network, ∝ represents the learning rate. ∝ decrease 

monotonically with t and hv(t)  is the neighborhood of the 

winning neuron and is obtained by 

 

( )
2

2

( )
( )

hv t   c  d 

h vn i

e σ

− −

= +                   (4) 

ct

t   a  b eσ −= +                     (5) 

Where nv is the number of the winning neuron, i denotes the 

number of the updating neuron, a,b,c,d and h are constant 

coefficients and determine the radius neighborhood. hv(t) 

and σt decrease with t. also, hv(t) decrease with keeping out 

of the way from the winning neuron. 

 

 
Fig. 3. Khepera II 

After updating neurons, the next input is fed to SOM 

networks, the winning neuron is selected and the neurons are 

updated again. Iterations proceed until a pre-specified 

number is satisfied. 

B. Tuning of output membership functions 

 

This step is different from before step at how selecting of the 

winning neuron and updating neurons. In the before step, the 

neuron whose value is smallest distance with the input is 

selected as winning neuron. But in this step, the neuron 

whose value has the most firing strength of the fuzzy rule is 

selected as winning neuron. 

The winning vector and its neighbors are updated by 

 

( ) ( ) ( ) ( )w t  w t 1   [ hv t  ( (t) - w t 1 )]c= − + α −          (6) 

 

Where w(t) is the weight vector of neurons, c(t) denotes the 

value of the winning neuron, ∝ represents the learning rate 

and decrease monotonically with t. hv(t)  is the 

neighborhood of the winning neuron and is obtained by 

equation (4) and (5). 

Algorithm proceeds similar to previous method. 

IV. SIMULATION AND IMPLEMENTATION RESULTS 

 

In order to compare the self tuning FLC by SOM with the 

FLC, two approaches have been applied to control the 

Khepera mobile robot [1] for the obstacle avoidance task by 

using kiks [9] (Khepera Simulator). KiKS is an abbreviation 

for”Kiks is a Khepera Simulator”. The program is a Matlab 

application that simulates a Khepera II robot connected to 

the computer in a very realistic way. The simulated Khepera 

is controlled from Matlab in the same way as real, physical 

Kheperas. (For more details see [9]).  

Khepera is a miniature mobile robot (Fig. 3) developed in 

the Microcomputing Laboratory of Swiss Federal Institute of 

Technology [1]. It has a cylindrical shape, measuring 55 mm 

in diameter and 30 mm in height and its weight is only 70 g. 

The robot has two DC motors and eight analogue infra-red 

(IR) proximity sensors (Fig. 4). 

 
Fig. 4. Position of the sensors on the Khepera mobile robot 

 

                ⋯⋯ 

 

       x(t) 
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The task is to an autonomous mobile robot with a path 

planning and intelligent control should move among 

obstacles without collision them to reach the target. First, the 

robot rotates toward target and moves with a fixed speed for 

a time step while detecting obstacle. When robot detects any 

obstacle by IR sensors, FLC is to be activated. Otherwise, 

the robot moves with a fixed speed for a time step. The 

inputs of FLC are distance and angle between robot and 

obstacle. The value of distance and angle are calculated 

using data sensors of the robot and with the vectorial course. 

For simplicity calculations and since the robot move toward 

front, for determining distance and angle are used data of the 

front sensors (i.e. 0, …, 5). The outputs of FLC are the speed 

of wheels. They are applied to robot’s wheels and the robot 

rotates until doesn’t collide obstacle then it will rotate 

toward target. This process will continue, until the robot 

reaches the target. 

In this work, comparison studies among the FLC and the 

self-tuning FLC algorithms are carried out. The rule base is 

set manually based on intuition and is same for the both 

algorithms. The knowledge base of FLC is set manually 

based on intuition but the knowledge base of self tuning FLC 

algorithm is tuned by SOM (see section3).  

For the proposed self tuning FLC, the maximum learning 

rate is αmax = 1.5; the constant coefficients of input MFs are a 

= 1.5, b=7.5, c = 0.5, d = 0.05 and h = 10; the constant 

coefficients of output MFs are a = 1.5, b=5.5, c = 1, d = 0.05 

and h = 10;  

The testing scenarios were doing in the environments that as 

not use for tuning parameters of FLC, i.e. the unknown 

environment for the robot. The simulation is carried out for 

three different scenarios (path planning with 2, 4 and 12 

obstacles in the unknown environments in the first, 2
nd

 and 

3
rd

 scenarios, respectively) and is presented in figs. 5-10. 

Also, the implementation results are presented in fig. 11. 

Numerical calculation results for these two methods are 

shown in Tables II, III and IV. TOC denotes the time of 

competition (the time of robot motion from start point to 

target), NoH represents the number of hits of the robot with 

the obstacles. ASR is average of speed robot during path and 

RDP denotes error of deviation of travelling path from 

optimal path for each scenario.  

The results show that total time traveling of robot and length 

travelling path of robot with self tuning FLC by SOM is 

lower and smoother than FLC. 

V. CONCLUSION 

In this paper, self tuning FLC method is used to plan path 

for a mobile robot while avoiding obstacles. In this method, 

MFs are tuned automatically. Also, this method is simple. 

Results show this method acts successfully and robot move 

among obstacles without collision them in unknown 

environment. Also, the simulation and implementation 

results show that total time traveling of robot and length 

travelling path of robot with self tuning FLC is lower and 

smoother than FLC. 

 
TABLE II 

FLC 

RDP (mm)  

No. H  

ASR 

(cm/sec)  

TOC (sec)  
  

90 0  11.9130  12.4530   Scenario 1 

134.5 0  8.8814  17.5700  Scenario 2 

127.23 0 8.9002 18.2145 Scenario 3 

TOC = time of competition, ASR = average of speed robot, No.H = 

Number of hits, RDP = error of deviation of travelling path from optimal 

path for each scenario 

 

TABLE III 

SELF TUNING FLC WITH SOM. 

RDP  

(mm) 

 

No. H  

ASR 

(cm/sec)  

TOC (sec)    

31.19 0  13.301  10.6480  Scenario 1 

36.99 0  10.3190  14.3980  Scenario 2 

78.39 0 10.3158 15.2010 Scenario 3 

TOC = time of competition, ASR = average of speed robot, No.H = 

Number of hits, RDP = error of deviation of travelling path from optimal 

path for each scenario 

 

TABLE IV 

IMPLEMENTATION RESULTSUSING FLC AND SELF TUNING FLC 

RDP  

(mm) 

 

No. H  

ASR 

(cm/sec)  

TOC (sec)    

70.22 0  8.0552  17.594  FLC 

19.85 0  9.9046  10.969  
Self tuning 

FLC 

TOC = time of competition, ASR = average of speed robot, No.H = 

Number of hits, RDP = error of deviation of travelling path from optimal 

path for each scenario 

 

 

 
Fig. 5. Scenario 1: path planning with 2 obstacles in the unknown 

environment with FLC 
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Fig. 6. Scenario 2: path planning with 4 obstacles in the unknown 

environment with FLC 

 

 
Fig. 7. Scenario 3: path planning with 12 obstacles in the unknown 

environment with FLC 

 
Fig. 8. Scenario 1: path planning with 2 obstacles in the unknown 

environment with self tuning FLC by SOM 

 

 
Fig. 9. Scenario 2: path planning with 4 obstacles in the unknown 

environment with self tuning FLC by SOM 

 

 
Fig. 10. Scenario 3: path planning with 12 obstacles in the unknown 

environment with self tuning FLC by SOM 
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Fig. 11. Implementation of path planning in the unknown environment with 

FLC and self tuning FLC by SOM 
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