
The 18th European Conference on Artificial Intelligence

Proceedings of the

1st International Workshop on
Evolutionary and Reinforcement Learning

for Autonomous Robot Systems
(ERLARS 2008)

Tuesday, July 22 2008
Patras, Greece

Nils T Siebel and Josef Pauli

http://www.erlars.org/

ii

Table of Contents

A Message from the Chairs . p. v

Organisation of the ERLARS 2008 Workshop . p. vii

Gradient Based Reinforcement Learning for Autonomous Underwater
Cable Tracking
Andres El-Fakdi, Marc Carreras, Emili Hernandez . p. 1

Incremental Basis Function Expansion in Reinforcement Learning using
Cascade-Correlation Networks
Sertan Girgin, Philippe Preux . p. 9

Application of Reinforcement Learning in a Real Environment Using an
RBF Network
Sebastian Papierok, Anastasia Noglik, Josef Pauli . p. 17

Using Cooperative Multi-Agent Q-Learning to Achieve Action Space
Decomposition within Single Robots
Sebastiaan Troost, Erik Schuitema, Pieter Jonker . p. 23

A Reinforcement Learning Approach for Production Control in
Manufacturing Systems
Alexander Xanthopoulos, Dimitrios Koulouriotis, Antonios Gasteratos p. 33

Efficient Learning of Dynamics Models using Terrain Classification
Bethany Leffler, Christopher Mansley, Michael Littman . p. 41

iii

iv

A Message from the Chairs

We would like to welcome you all to the 1st International Workshop on Evolutionary and Re
inforcement Learning for Autonomous Robot Systems, ERLARS 2008, held in conjunction
with the ECAI 2008 conference in Patras, Greece on July 22 2008.

The ERLARS workshop is concerned with research on efficient algorithms for evolutionary
and reinforcement learning methods to make them more suitable for autonomous robot
systems. The long term goal is to develop methods that enable robot systems to learn com
pletely, directly and continuously through interaction with the environment. In order to
achieve this, methods are examined that can make the search for suitable robot control
strategies more feasible for situations in which only few measurements about the environ
ment can be obtained.

The articles that you will find in these proceedings are steps along this way. We hope that
they can serve as a useful set of ideas and methods to achieve the long term research goal.

We would like to thank the program committee members who provided excellent reviews in
a short period of time. We are also especially indebted to the authors of the articles that
were sent to this workshop because they provided the material to make us think and discuss.

It has been a great pleasure organising this event and we are happy to be supported by such
a strong team of researchers. We sincerely hope that you enjoy the workshop and we look
forward, with your help, to continue building a strong community around this event in the
future.

Nils T Siebel and Josef Pauli, Chairs, ERLARS 2008 Workshop.

v

vi

Organisation of the ERLARS 2008 Workshop

Workshop Chairs

Nils T Siebel
Cognitive Systems Group
Institute of Computer Science
Christian-Albrechts-University of Kiel
Kiel, Germany

Josef Pauli
Intelligent Systems Group
Department of Computer Science
University of Duisburg-Essen
Duisburg, Germany

Programme Committee

Andrew Barto, Autonomous Learning Laboratory, University of Massachusetts Amherst, USA.
Peter Dürr, Laboratory of Intelligent Systems, EPFL Lausanne, Switzerland.
Christian Igel, Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany.
Yohannes Kassahun, DFKI Lab Bremen, University of Bremen, Germany.
Takanori Koga, Kyushu Institute of Technology, Kitakyushu, Japan.
Tim Kovacs, Department of Computer Science, University of Bristol, UK.
Jun Ota, Graduate School of Engineering, University of Tokyo, Japan.
Josef Pauli, Intelligent Systems Group, University of Duisburg-Essen, Germany.
Jan Peters, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Daniel Polani, Department of Computer Science, University of Hertfordshire, Hatfield, UK.
Marcello Restelli, Artificial Intelligence and Robotics Laboratory, Politecnico di Milano, Italy.
Stefan Schiffer, Department of Computer Science, RWTH Aachen University, Germany.
Juergen Schmidhuber, Swiss AI Lab IDSIA, Lugano, Switzerland.
Nils T Siebel, Institute of Computer Science, Christian-Albrechts-University of Kiel, Germany.
Marc Toussaint, Berlin Machine Learning and Robotics Group, TU Berlin, Germany.
Jeremy Wyatt, School of Computer Science, University of Birmingham.

vii

viii

Gradient Based Reinforcement Learning
for Autonomous Underwater Cable Tracking

Andres El-Fakdi and Marc Carreras and Emili Hernandez1

Abstract. This paper proposes a field application of a high-level
Reinforcement Learning (RL) control system for solving the action
selection problem of an autonomous robot in a cable tracking task.
The learning system is characterized by using a policy gradient based
search method for learning the internal state/action mapping. The
function approximator used to represent the policy is a barycentric
interpolator. Policy only algorithms may suffer from long conver-
gence times when dealing with real robotics. In order to speed up
the process, the learning phase has been carried out in a simulated
environment using the hydrodynamic model of the vehicle and, in a
second step, the policy has been transferred and tested successfully
on a real robot. Future steps plan to continue the learning process on-
line while on the real robot while performing the mentioned task. We
demonstrate its feasibility with real experiments on the underwater
robot ICTINEU Autonomous Underwater Vehicle (AUV).

1 INTRODUCTION
Reinforcement Learning (RL) is a widely used methodology in robot
learning, see [23]. In RL, an agent tries to maximize a scalar evalua-
tion obtained as a result of its interaction with the environment. The
goal of a RL system is to find an optimal policy to map the state of the
environment to an action which in turn will maximize the accumu-
lated future rewards. The agent interacts with a new, undiscovered
environment selecting actions for each state, receiving a numerical
reward for every decision. Obtained rewards are used to teach the
agent so the robot learns which action to take at each state, achieving
an optimal or sub-optimal policy (state-action mapping).

The dominant approach over the last decade has been to apply re-
inforcement learning using the value function approach. Although
value function methodologies have worked well in many applica-
tions, they have several limitations. The considerable amount of com-
putational requirements that increase time consumption and the lack
of generalization among continuous variables represent the two main
disadvantages of ”value” RL algorithms. Over the past few years,
studies have shown that approximating a policy can be easier than
working with value functions, and better results can be obtained ([24]
[2]). As presented in [1], it is intuitively simpler to determine how to
act instead of value of acting. So, rather than approximating a value
function, new methodologies approximate a policy using an indepen-
dent function approximator with its own parameters, trying to max-
imize the future expected reward. Only a few but promising prac-
tical applications of policy gradient algorithms have appeared, this
paper emphasizes the work presented in [5], where an autonomous
helicopter learns to fly using an off-line model-based policy search
method. Also important is the work presented in [21] where a simple

1 University of Girona, Spain, email: aelfakdi@eia.udg.edu

“biologically motivated” policy gradient method is used to teach a
robot in a weightlifting task. More recent is the work done in [10]
where a simplified policy gradient algorithm is implemented to op-
timize the gait of Sony’s AIBO quadrupedal robot. More recently,
the work presented in [18] gives an overview on learning with policy
gradient methods for robotics while presenting the results obtained
in the application of hitting a baseball with an anthropomorphic arm.

All these recent applications share a common drawback, gradient
estimators used in these algorithms may have a large variance (see
[13] and [11]) what means that policy gradient methods learn much
more slower than RL algorithms using a value function (see [24]) and
they can converge to local optima of the expected reward (see [15]),
making them less suitable for on-line learning in real applications. In
order to decrease convergence times and avoid local optima, newest
applications combine policy gradient algorithms with other method-
ologies, it is worth to mention the work done in [25] and [14], where
a biped robot is trained to walk by means of a “hybrid” RL algorithm
that combines policy search with value function methods.

A good proposal for speeding up gradient methods may be offer-
ing the agent an initial policy. Example policies can direct the learner
to explore the promising part of search space which contains the
goal states, specially important when dealing with large state-spaces
whose exploration may be infeasible. Also, local maxima dead ends
can be avoided with example techniques [12]. The idea of providing
high-level information and then use machine learning to improve the
policy has been successfully used in [22] where a mobile robot learns
to perform a corridor following task with the supply of example tra-
jectories. In [4] the agent learns a reward function from demonstra-
tion and a task model by attempting to perform the task. Finally, the
work done in [9] concerning an outdoor mobile robot that learns to
avoid collisions by observing a human driver operating the vehicle.

This paper proposes a reinforcement learning application where
the underwater vehicle ICTINEUAUV carries out a visual based
cable tracking task using a direct gradient algorithm to represent
the policy. The function approximator used to represent the policy
a barycentric interpolator function. An initial example policy is first
computed by means of computer simulation where a hydrodynamic
model of the vehicle simulates the cable following task. Once the
simulated results are accurate enough, in a second phase, the policy is
transferred to the vehicle and executed in a real test. A third step will
be mentioned as a future work, where the learning procedure con-
tinues on-line while the robot performs the task, with the objective
of improving the initial example policy as a result of the interaction
with the real environment. This paper is structured as follows. In Sec-
tion 2 the learning procedure and the policy gradient algorithm are
detailed. Section 3 describes all the elements that affect our problem:
the underwater robot ICTINEUAUV , the mathematical model of

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

1

the vehicle used in the simulation, the vision system and the con-
troller. Details and results of the simulation process and the real test
are given in Section 4 and finally, conclusions and the future work to
be done are included in Section 5.

2 LEARNING PROCEDURES
The introduction of prior knowledge in a gradient descent methodol-
ogy can dramatically decrease the convergence time of the algorithm.
This advantage is even more important when dealing with real sys-
tems, where timing is a key factor. Such learning systems can divide
its procedure into two phases or steps as shown in Fig. 1. In the first
phase of learning (see Fig. 1(a)) the learner interacts with a simulated
environment; during this phase, the agent extracts all useful informa-
tion from simulation. In a second step, once it is considered that the
agent has enough knowledge to build a “secure” policy, it takes con-
trol of the real robot and the learning process continues in the real
world, see Fig. 1(b).

The proposal presented here takes advantage of learning by simu-
lation as an initial startup for the learner. The objective is to transfer
an initial policy, learned in a simulated environment, to a real robot
and test the behavior of the learned policy in real conditions. First, the
learning task will be performed in simulation with the aid of the hy-
drodynamic model of the robot. Once the learning process is consid-
ered to be finished, the policy will be transferred to ICTINEUAUV

in order to test it in the real world. In a future task, the learning pro-
cedure will switch to a third phase, continuing to improve the policy
while in real conditions. The Baxter and Bartlett approach [6] is the
gradient descent method selected to carry out the simulated learning
corresponding to phase one. Next subsection gives details about the
algorithm.

2.1 The gradient descent algorithm
The Baxter and Bartlett’s algorithm is a policy search methodology
with the aim of obtaining a parameterized policy that converges to an
optimum by computing approximations of the gradient of the aver-
aged reward from a single path of a controlled partially observable
Markov decision process (POMDP). The convergence of the method
is proven with probability 1, and one of the most attractive features
is that it can be implemented on-line. In a previous work presented in
[7], the same algorithm was used in a simulation task achieving good
results. The algorithm’s procedure is summarized in Algorithm 1.

a) b)
Simulated

Environment

Real
Environment

rtst at

Learning
Algorithm

st at

Learning
Algorithm

Real
Environment

Simulated
Environment

Figure 1. Learning phases.

The algorithm works as follows: having initialized the parameters
vector θ0, the initial state i0 and the eligibility trace z0 = 0, the learn-
ing procedure will be iterated T times. At every iteration, the param-
eters’ eligibility zt will be updated according to the policy gradient
approximation. The discount factor β ∈ [0, 1) increases or decreases
the agent’s memory of past actions. The immediate reward received
r(it+1), and the learning rate α allows us to finally compute the new
vector of parameters θt+1. The current policy is directly modified
by the new parameters becoming a new policy to be followed by the
next iteration, getting closer to a final policy that represents a correct
solution of the problem.

Algorithm 1: Baxter and Bartlett’s OLPOMDP algorithm
1. Initialize:

T > 0
Initial parameter values θ0 ∈ RK

Initial state i0
2. Set z0 = 0 (z0 ∈ RK)
3. for t = 0 to T do:

(a) Observe state xt

(b) Generate control action ut according to current policy µ(θ, xt)
(c) Observe the reward obtained r(it+1)

(d) Set zt+1 = βzt +
∇µut (θ,xt)

µut (θ,xt)

(e) Set θt+1 = θt + αtr(it+1)zt+1
4. end

The algorithm is designed to work on-line. Our policy will be ap-
proximated with a particular class of functions called the barycentric
interpolators (see [16]), which use an interpolation process based on
a finite set of discrete points conforming a mesh. This mesh does not
need to be regular, but the method outlined here assumes that the state
space is divided into a set of rectangular boxes as shown in Fig. 2.
The key here is that any particular point is enclosed in a rectangu-
lar box that can be defined by 2N nodes in our N-dimensional state
space.

Figure 2. Example of a 2-dimension rectangular mesh.

Let Σδ = {ξi}i be a set of points distributed in the mesh at some
resolution δ on the state of dimension d. For any state x inside some
rectangular box (ξi, ..., ξn), x is the barycenter of the {ξi}i=1..n

inside this box with positive coefficients p(x|ξi) of sum 1 called the
barycentric coordinates (see Fig. 3) where:

x =
∑

i=1..n

p(x|ξi)ξi (1)

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

2

3ξ

2ξ4ξ

1ξx1(|)p x ξ 2(|)p x ξ3(|)p x ξ 4(|)p x ξ

Figure 3. Graphic representation of the barycentric coordinates given a
state x in a 2 dimensional mesh case.

We can set V δ(ξi) as the value of the function at the points pre-
viously described ξi. As seen in Eq. 2, V δ(x) is the barycentric in-
terpolator of state x which is the barycenter of the points {ξi}i=1..n

for some box (ξi, ..., ξn) with barycentric coordinates p(x|ξi), see
Fig. 4.

V δ(x) =
∑

i=1..n

p(x|ξi)V
δ(ξi) (2)

As stated before, our policy will be directly approximated using
a barycentric interpolator function whose values V δ(ξi) represent
the policy parameters. Therefore, given and input state xt the pol-
icy will compute a continuous control action V δ(x)t = ut driving
the learner to a new state with its associated reward. Once the action
has been selected, the parameter update process starts. The barycen-
tric interpolator parameters are updated following expression 3.(d) of
Algorithm 1:

z(ξi)t+1 = βz(ξi)t +
∇µut(V

δ(ξi), xt)

µut(V
δ(ξi), xt)

(3)

z(ξi)t+1 = βz(ξi)t + p(x|ξi)e (4)

the error at the output is given by:

e = V δ(x)desired − V δ(x) (5)

z(ξi)t+1 = βz(ξi)t + p(x|ξi)(V
δ(x)desired − V δ(x)) (6)1()V δ ξ 2()V δ ξ4()V δ ξ

3()V δ ξ

1..4() (|)· ()i iiV x p x Vδ δξ ξ
=

= ∑ x
Figure 4. Calculation of the function approximator output given a

particular state x.

Finally, the old parameters are updated following expression 3.(e)
of Algorithm 1:

V δ(ξi)t+1 = V δ(ξi)t + αr(it+1)zt+1 (7)

The vector V δ(ξi) represents the policy parameters to be up-
dated, r(it+1) is the reward given to the learner at every time step,
zt+1describes the estimated gradients mentioned before and, at last,
we have α as the learning rate of the algorithm.

3 CASE TO STUDY: CABLE TRACKING

This section is going to describe the different elements that take place
into our problem: first, a brief description of the underwater robot
ICTINEUAUV and its model used in simulation is given. The sec-
tion will also present the problem of underwater cable tracking and,
finally, a description of the barycentric interpolator function designed
for both, the simulation and the real phases is detailed.

3.1 ICTINEUAUV

The underwater vehicle ICTINEUAUV was originally designed to
compete in the SAUC-E competition that took place in London dur-
ing the summer of 2006 [19]. Since then, the robot has been used as a
research platform for different underwater inspection projects which
include dams, harbors, shallow waters and cable/pipeline inspection.

The main design principle of ICTINEUAUV was to adopt a
cheap structure simple to maintain and upgrade. For these reasons,
the robot has been designed as an open frame vehicle. With a weight
of 52 Kg, the robot has a complete sensor suite including an imaging
sonar, a DVL, a compass, a pressure gauge, a temperature sensor, a
DGPS unit and two cameras: a color one facing forward direction
and a B/W camera with downward orientation. Hardware and bat-
teries are enclosed into two cylindrical hulls designed to withstand
pressures of 11 atmospheres. The weight is mainly located at the
bottom of the vehicle, ensuring the stability in both pitch and roll
degrees of freedom. Its five thrusters will allow ICTINEUAUV to
be operated in the remaining degrees of freedom (surge, sway, heave
and yaw) achieving maximum speeds of 3 knots (see Fig. 5).

Figure 5. The autonomous underwater vehicle ICTINEUAUV .

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

3

3.2 AUV mathematical model
As described in the literature [8], the non-linear hydrodynamic equa-
tion of motion of an underwater vehicle with 6 degrees of freedom
(DOF), in the body fixed frame, can be conveniently expressed as:

τB + G(η)−D(υB)υB + τp = (MB
RB + MA)υ̇B + ...

... + (CB
RB(υB) + CA(υB))υB (8)

Where:

• υB is the velocity vector.
• υ̇B is the acceleration vector.
• η = (φθψ)T are the Roll, Pith and Yaw angles.
• τB are the forces and moments exerted by thrusters.
• G(η) are the gravity and buoyancy forces.
• D(υB) are the linear and quadratic damping matrixes.
• D(τP are the not modeled perturbations.
• MB

RB is the inertia matrix.
• MB

A is the added mass matrix.
• CB

RB is the rigid body Coriolis and centripetal matrix.
• CB

A is the hydrodynamic Coriolis and centripetal matrix.

Identification of the complete set of coefficients and hydrody-
namic derivatives which appear in Eq. 8 is a rather complex task.
The identification problem can be much more easily approached if
the following simplifications are applied:

• D(υB) consists of the lineal and quadratic damping forces and
can be assumed diagonal.

• MB
RB and MB

A can be assumed diagonal (this is true for
ICTINEUAUV due to its squared shape, see Subsection 3.1).

• The body frame is located at the gravity center.

Moreover, if the robot is actuated in a single DOF during the iden-
tification experiments, further simplifications can be carried out. For
instance, let’s consider the dynamic equation for the surge (move-
ment along X axis) DOF:

τu + (sin(θ)B − sin(θ)W)− (Xu + Xu|u||u|)u + ...
... + τP = (m−Xu̇)u̇ + [(m− Zẇ)wq]− [(m− Yv̇)vr]

(9)

which follows the standard notation proposed in [8]. If we excite
the robot in a single DOF, surge in this case, in such a way that:

• u 6= 0 and v = w = p = q = r = 0
• θ = φ = 0

uncoupled experiment can be achieved, Eq. 9 can be rewritten as:

u̇ = − Xu

(m−Xu̇)
u− Xu|u||u|

(m−Xu̇)
u +

τu

(m−Xu̇)
+

τP

(m−Xu̇)
(10)

The same procedure can be applied to each degree of freedom so
we can consider a generic uncoupled equation of motion for the i-
degree of freedom as:

ẋi = αixi + βixi|xi|+ γiτi + δi (11)

where the state variable x represents speed. Hence, things become
easier if we use Eq. 11 for the identification. Once the whole model

X

Y

xg

field of view

camera
coordinate
frame

yg

Θρ
Figure 6. Coordinates of the target cable with respect ICTINEUAUV .

has been uncoupled, its parameters have been identified by means
of parameter identification methods [20]. The resultant model has
been reduced to emulate a robot with only three degrees of free-
dom (DOF), X movement, Y movement and rotation respect Z axis.
The identified parameters can be see in Table 1. Note that related to
the squared shape of the vehicle, the robot behavior has been con-
sidered equal in X and Y ; also, the β term corresponding to the
quadratic damping has been neglected due to the low speeds achieved
by ICTINEUAUV during the tests.

Table 1. Parameter identification results.

Parameters

DOF α β γ δ

Surge (X movement) 0.3222 0 0.0184 0.0012
Sway (Y movement) 0.3222 0 0.0184 0.0012
Yaw (Z rotation) 1.2426 0 0.5173 -0.050

3.3 The Cable Tracking Vision System

The downward-looking B/W camera installed on ICTINEUAUV

will be used for the vision algorithm to track the cable. It provides a
large underwater field of view (about 57◦ in width by 43◦ in height).
This kind of sensor will not provide us with absolute localization
information but will give us relative data about position and orien-
tation of the cable respect to our vehicle: if we are too close/far or
if we should move to the left/right in order to center the object in
our image. The vision-based algorithm used to locate the cable was
first proposed in [17] and later improved in [3]. It exploits the fact
that artificial objects present in natural environments usually have
distinguishing features; in the case of the cable, given its rigidity and
shape, strong alignments can be expected near its sides. The algo-
rithm will evaluate the polar coordinates ρ (orthogonal distance from
the origin of the camera coordinate frame) and Θ (angle between ρ
and X axis of the camera coordinate frame) of the straight line cor-
responding to the detected cable in the image plane (see Fig. 6).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

4

Once the cable has been located and the polar coordinates of the
corresponding line obtained, as the cable is not a thin line but a large
rectangle, we will also compute the cartesian coordinates (xg ,yg)
(see Fig. 6) of the cable’s centroid with respect to the image plane
by means of (12).

ρ = xcos(Θ) + ysin(Θ) (12)

where x and y correspond to the position of any point of the line
in the image plane. The computed parameters xg and Θ together
with its derivatives δxg

δt
and δΘ

δt
will conform the input state to our

policy function represented by the barycentric interpolator. For the
simulated phase, a downward-looking camera model has been used
to emulate the vision system of the vehicle.

3.4 Design of the barycentric interpolator to
represent the policy

As stated in previous section, the observed state is a 4 dimension vec-
tor x = (xg, Θ,

δxg

δt
, δΘ

δt
). The x component of the cable centroid in

the image plane xg is ranged from [0, 1.078] meters, Θ = [−π
2

, π
2
]

radians, the derivative of xg , δxg

δt
= [−0.5, 0.5]m/s and finally,

δΘ
δt

= [−1, 1]rad/s . From these observations, the robot will take
decisions concerning two degrees of freedom, Y movement (Sway)
and Z axis rotation (Yaw), therefore the continuous action vector is
defined as u = (usway, uyaw) where usway = [−1, 1]m/s and
uyaw = [−1, 1]rad/s. The X movement of the vehicle (surge) will
not be learned. A simple controller has been implemented to control
the X DOF; only if the cable is centered in the image plane the robot
will move forward (usurge = 0.3m/s), otherwise usurge = 0.

In order to decrease the function approximator complexity reduc-
ing the number of grid points, the main policy has been split into two
subpolicies, each one represented by a 2-dimensional barycentric in-
terpolator. It can be easily noticed that usway actions will be mainly
affected by the position and the velocity of xg along the X axis of
the image plane. In the same way, uyaw actions will strongly depend
on the angle Θ of the cable in the image plane. Although learning
uncoupled policies will probably reduce the final performance of the
learner, it has been a good initial startup to focus the problem. In
Fig. 7, the observed substate (xg,

δxg

δt
) is the input of subpolicy a),

being the output usway . Subpolicy b) has (Θ, δΘ
δt

) as input variables
and uyaw as output. The density factor δ of the barycentric mesh for
both grids has been experimentally set to 10 equal divisions for each
axis, therefore the mesh has 100 cells.

4 RESULTS
4.1 First phase: Simulated Learning
The model of the underwater robot ICTINEUAUV navigates a two
dimensional world at 1 meter height above the seafloor. The simu-
lated cable is placed at the bottom in a fixed circular position. The
learner has been trained in an episodic task. An episode ends either
every 15 seconds (150 iterations) or when the robot misses the cable
in the image plane, whatever comes first. When the episode ends, the
robot position is reset to a random position and orientation around
the cable’s location, assuring any location of the cable within the im-
age plane at the beginning of each episode. According to the values
of the state parameters θ and xg , a scalar immediate reward is given
each iteration step. Three values were used: -10, -1 and 0. In order
to maintain the cable centered in the image plane, the non negative
reward r = 0 is given when the position along the X axis of the

gxt∂
∂, , ,gg xx x t tθθ

∂ ∂= ∂ ∂
1()swayV δ ξ 2()swayV δ ξ4()swayV δ ξ

3()swayV δ ξ

1..4() (|)· ()sway sway i sway iiu V x p x Vδ δξ ξ
=

= = ∑
x

1()yawV δ ξ 2()yawV δ ξ4()yawV δ ξ

3()yawV δ ξ

1..4() (|)· ()yaw yaw i yaw iiu V x p x Vδ δξ ξ
=

= = ∑
x

a) Sway policy
b) Yaw policy θtθ∂

∂

(),sway yawu u u=

gx

Figure 7. Representation of both subpolicies. a) represents the sway
policy. b) represents the yaw policy.

centroid (xg) is around the center of the image (xg ± 0.15) and the
angle θ is close to 90◦ (90◦ ± 15◦). A r = −1 is given in any other
location within the image plane. The reward value of -10 is given
when the vehicles misses the target and the episode ends.

The number of episodes to be done has been set to 2000. For ev-
ery episode, the total amount of reward perceived is calculated. Fig. 8
represents the performance of the computed policy as a function of
the number of episodes when trained using Baxter and Bartlett’s al-
gorithm. The experiment has been repeated in 100 independent runs.
The results here presented are the mean over these runs. The learning
rate was set to α = 0.001 and the discount factor β = 0.98. In Fig. 9
and Fig. 10 we can observe a state/action mapping of a trained agent
in both, yaw and sway degrees of freedom. Figure 11 represents the
trajectory once the training period finishes.

4.2 Second phase: Learned policy transfer. Real
test

Once the learning process is considered to be finished, the resultant
policy is transferred to ICTINEUAUV and its performance tested
in a real environment. The experimental setup can be seen in Fig. 12
where the detected cable is shown while the vehicle performs a test
inside the pool. Fig. 13 represents real measured trajectories of the
θ angle while the vehicle performs different attempts to center the
cable in the image.

5 CONCLUSIONS AND FUTURE WORKS
This paper proposes a field application of a high-level Reinforce-
ment Learning (RL) control system for solving the action selection
problem of an autonomous robot in cable tracking task. The learn-
ing system is characterized by using a direct policy search algorithm
for robot control based on Baxter and Bartlett’s direct-gradient algo-
rithm. The policy is represented by 2 barycentric interpolators with

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

5

2 input state variables, each one controlling one degree of freedom.
In order to speed up the process, the learning phase has been car-
ried out in a simulated environment and then transferred and tested
successfully on the real robot ICTINEUAUV .

Results of this work show a good performance of the learned pol-
icy. Although it is not a hard task to learn in simulation, continuing
the learning autonomously in a real situation represents a challenge
due to the nature of underwater environments. We believe that direct
policy search reinforcement learning methods can be a good solu-
tion to solve decision making problems in such a hostile situation
as underwater missions. Future steps are focused on continue to im-
prove the policy by means of on-line learning in real environment
and comparing the results obtained with human pilots tracking tra-

0 500 1000 1500 2000
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Number of Trials

M
ea

n
 T

o
ta

l R
 p

er
 T

ri
al

Total R per Trial (mean of 100 rep.)

learning rate 0.001
discount factor 0.98

Figure 8. Performance of the neural-network robot controller as a function
of the number of episodes. Performance estimates were generated by

simulating 2000 episodes. Process repeated in 100 independent runs. The
results are a mean of these runs. Fixed α = 0.001, and β = 0.98.

-2

-1

0

1

2
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Theta Velocity (Radians/Second)

State-Action mapping representation for YAW actions

Theta Angle (Radians)

 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 9. Theta angle - Theta velocity mapping of a trained robot
controller. Colorbar on the right represents the actions taken.

0

0.2

0.4

0.6

0.8

1

-0.5

0

0.5
-1

-0.5

0

0.5

1

State-Action mapping representation for SWAY actions

 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Xg velocity (m/s) Xg position (m)

Figure 10. Centroid X position - Centroid X velocity mapping of a trained
robot controller. Colorbar on the right represents the actions taken.

Figure 11. Behavior of a trained robot controller, results of the simulated
cable tracking task after learning period is completed.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

6

Figure 12. ICTINEUAUV in the test pool. Small bottom-right image:
Detected cable.

0 20 40 60 80 100 120 140 160 180
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Iterations

T
h

et
a

an
g

le
 (R

ad
ia

n
ts

)

Real Variation of the Theta angle while attempting to center the cable

Figure 13. 4 real measured trajectories of the θ angle of the image plane
while attempting to center the cable at π/2 rad. Every iteration represents

0.1 seconds.

jectories and other controllers.

ACKNOWLEDGEMENTS
First of all, we would like to give our special thanks to the group
of the University of the Balearic Islands for allowing us to use their
cable detection algorithm. This work has been financed by the Span-
ish Government Comission MCYT, project number DPI2005-09001-
C03-01, also partially funded by the MOMARNET EU project
MRTN-CT-2004-505026 and the European Research Training Net-
work on Key Technologies for Intervention Autonomous Underwater
Vehicles FREESUBNET, contract number MRTN-CT-2006-036186.

REFERENCES
[1] D. A. Aberdeen, Policy-Gradient Algorithms for Partially Observable

Markov Decision Processes, Ph.D. dissertation, Australian National
University, April 2003.

[2] C. Anderson, ‘Approximating a policy can be easier than approximat-
ing a value function’, Computer science technical report, University of
Colorado State, (2000).

[3] J. Antich and A. Ortiz, ‘Underwater cable tracking by visual feedback’,
in First Iberian Conference on Pattern recognition and Image Analysis
(IbPRIA, LNCS 2652), Port d’Andratx, Spain, (2003).

[4] C.G. Atkenson, A.W. Moore, and S. Schaal, ‘Locally weighted learn-
ing’, Artificial Intelligence Review, 11, 11–73, (1997).

[5] J.A. Bagnell and J.G. Schneider, ‘Autonomous helicopter control using
reinforcement learning policy search methods’, in Proceedings of the
IEEE International Conference on Robotics and Automation, Korea,
(2001).

[6] J. Baxter and P. Bartlett, ‘Direct gradient-based reinforcement learn-
ing: I. gradient estimation algorithms’, Technical report, Australian Na-
tional University, (1999).

[7] A. El-Fakdi, M. Carreras, and P. Ridao, ‘Towards direct policy search
reinforcement learning for robot control’, in IEEE/RSJ International
Conference on Intelligent Robots and Systems, (2006).

[8] T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley and
Sons, 1995.

[9] Bradley Hammer, Sanjiv Singh, and Sebastian Scherer, ‘Learning ob-
stacle avoidance parameters from operator behavior’, Journal of Field
Robotics, Special Issue on Machine Learning Based Robotics in Un-
structured Environments, 23 (11/12), (December 2006).

[10] N. Kohl and P. Stone, ‘Policy gradient reinforcement learning for
fast quadrupedal locomotion’, in IEEE International Conference on
Robotics and Automation (ICRA), (2004).

[11] V.R. Konda and J.N. Tsitsiklis, ‘On actor-critic algorithms’, SIAM Jour-
nal on Control and Optimization, 42, number 4, 1143–1166, (2003).

[12] L.J. Lin, ‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching.’, Machine Learning, 8(3/4), 293–321,
(1992).

[13] P. Marbach and J. N. Tsitsiklis, ‘Gradient-based optimization of
Markov reward processes: Practical variants’, Technical report, Cen-
ter for Communications Systems Research, University of Cambridge,
(March 2000).

[14] T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya, ‘Learn-
ing sensory feedback to CPG with policy gradient for biped locomo-
tion’, in Proceedings of the International Conference on Robotics and
Automation ICRA, Barcelona, Spain, (April 2005).

[15] N. Meuleau, L. Peshkin, and K. Kim, ‘Exploration in gradient based
reinforcement learning’, Technical report, Massachusetts Institute of
Technology, AI Memo 2001-003, (April 2001).

[16] R. Munos and A. Moore, ‘Barycentric interpolators for continuous
space and time reinforcement learning’, (1998).

[17] A. Ortiz, M. Simo, and G. Oliver, ‘A vision system for an underwater
cable tracker’, International Journal of Machine Vision and Applica-
tions, 13 (3), 129–140, (2002).

[18] J. Peters and S. Schaal, ‘Policy gradient methods for robotics’, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
IROS’06, Beijing, China, (October 9-15 2006).

[19] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and E. Hernandez,
‘Ictineu auv wins the first sauc-e competition’, in IEEE International
Conference on Robotics and Automation, (2007).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

7

[20] P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, and A. Zirilli, ‘On the
identification of non-linear models of unmanned underwater vehicles’,
Control Engineering Practice, 12, 1483–1499, (2004).

[21] M.T. Rosenstein and A.G. Barto, ‘Robot weightlifting by direct policy
search’, in Proceedings of the International Joint Conference on Artifi-
cial Intelligence, (2001).

[22] W.D. Smart, Making Reinforcement Learning Work on Real Robots,
Ph.D. dissertation, Department of Computer Science at Brown Univer-
sity, Rhode Island, May 2002.

[23] R. Sutton and A. Barto, Reinforcement Learning, an introduction, MIT
Press, 1998.

[24] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour, ‘Policy gradi-
ent methods for reinforcement learning with function approximation’,
Advances in Neural Information Processing Systems, 12, 1057–1063,
(2000).

[25] R. Tedrake, T. W. Zhang, and H. S. Seung, ‘Stochastic policy gradient
reinforcement learning on a simple 3D biped’, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems IROS’04, Sendai,
Japan, (September 28 - October 2 2004).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

8

Incremental Basis Function Expansion in Reinforcement
Learning using Cascade-Correlation Networks

Sertan Girgin1 and Philippe Preux1,2

Abstract. In machine learning, in parallel to algorithms themselves,
the representation of data is a point of utmost importance. Efforts on
data pre-processing in general are a key ingredient to success. An al-
gorithm that performs poorly on a particular form of given data may
perform much better, both in terms of efficiency and the quality of
the solution, when the same data is represented in another form. De-
spite the amount of literature on the subject, the issue of how to en-
rich a representation to suit the underlying mechanism is clearly still
pending. In this paper, we approach this problem within the context
of reinforcement learning, and in particular, interested in discovery
of a “good” representation of data for the LSPI algorithm. To this
end, we use the cascade-correlation learning architecture to automat-
ically generate a set of basis functions which would lead to a better
approximation of the value function, and consequently improve the
performance of the resulting policies. This is especially important
within the context of learning in autonomus robot systems, as manu-
ally determining an effective set of basis functions generally requires
an in-depth understanding of the complex problem domain. We show
the effectiveness of the idea on some benchmark problems.

1 Introduction
Reinforcement learning (RL) is the problem faced by an agent that
is situated in an environment and must learn a particular behavior
through repeated trial-and-error interactions with it [20]; at each time
step, the agent observes the state of the environment, chooses its ac-
tion based on these observations and in return receives some kind of
“reward”, in other words a reinforcement signal, from the environ-
ment as feedback. The aim of the agent is to find a policy, a way
of choosing actions, that maximizes its overall gain – a function of
rewards, such as the (discounted) sum or average over a time pe-
riod. RL has been and is being extensively studied under different
settings (online / offline, discrete / continuous state-action spaces,
discounted / average reward, perfect / imperfect state information;
etc.) and various methods and algorithms (dynamic programming,
Monte Carlo methods, temporal-difference learning, etc.) have been
proposed. One common point to all such approaches is that, regard-
less of how they do it what is being produced as a solution is a map-
ping from inputs, observations, to outputs, actions. It is natural that
different approaches may require or prefer the input data be in differ-
ent forms, but still the same data can be represented in many different
ways conforming to the specified form. This brings up the questions
of what the best representation of input data is for a given method
or algorithm, and how it can be found. This point is a major issue,

1 Team-Project SequeL, INRIA Lille Nord-Europe
2 LIFL (UMR CNRS), Université de Lille

email: {sertan.girgin, philippe.preux}@inria.fr

not only in reinforcement learning, but also in machine learning, and
even, in artificial intelligence, and computer science.

In particular, in this paper, we will focus on Least-Squares Policy
Iteration (LSPI) algorithm [10] which uses a linear combination of
basis functions to approximate a state-action value function and learn
a policy from a given set of experience samples. The basis functions
map state-action tuples into real numbers, and each basis function
performs a mapping that is different from the others. From the point
of view of LSPI, the real input becomes the values of basis func-
tions evaluated for given state-action pairs. Therefore, the set of basis
functions that is being employed directly affects the quality of the so-
lution, and the question transforms into “what is the set of best basis
functions?”. We seek to provide a possible answer to this question by
proposing a method that incorporates a cascade correlation learning
architecture into LSPI and iteratively adds new basis functions to a
set of initial basis functions. In Section 2, we first introduce policy
iteration and the LSPI algorithm. Sections 3 describes cascade cor-
relation learning architecture followed by the details of the proposed
method for basis function expansion in Section 4. Section 5 presents
empirical evaluations on some benchmark problems, and a review of
related work can be found in Section 6. Finally, Section 7 concludes.

2 Least-Squares Policy Iteration
2.1 Markov Decision Problems
In this paper, we assume that the time t flows in a discrete manner,
that is t ∈ N. We consider the situation where an agent repeatedly
perceives the state of its environment, acts on it, which leads to a next
state and an immediate reward, in order to optimize a certain reward
function along time.

Following [17], a Markov decision problem (MDP) is defined as a
tuple (S,A,P,R) where:

• S is a set (finite, or not) of states,
• A is a set of actions,
• P(s, a, s′) is the transition function which denotes the probability

of making a transition from state s to state s′ by taking action a,
that is Pr[st+1 = s′|st = s, at = a] = P(s, a, s′),

• R(s, a) is the expected (immediate) reward function, that is the
expected immediate reward at time t, E[rt] = R(st, at),

In this paper, the function to be maximized is the expected total
discounted reward from any state s, that is:

R(s) =
∑
t≥0

γtrt(st, at)|s0 = s

where γ ∈ [0, 1) is the discount factor that determines the impor-
tance of future rewards.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

9

A policy is a probability distribution over actions conditioned on
the state; π(s, a) denotes the probability that policy π selects action
a at state s. An optimal policy maximizes the reward function R for
any initial state if followed.

Policy iteration is a general framework for finding an optimal
policy; starting from an initial policy, two basic steps, namely pol-
icy evaluation followed by policy improvement, are applied con-
secutively and iteratively until convergence to an optimal policy is
achieved or a certain stopping criterion is met.

Let πi be the policy at iteration i. A policy evaluation step consists
of finding the state value function,

V πi(s) = Eat∼πi
[∞∑
t=0

γtrt|s0 = s
]

or the state-action value function,

Qπi(s, a) = Eat∼πi,t>0

[∞∑
t=0

γtrt|s0 = s, a0 = a
]

of the current policy πi, where at is the action chosen according to
πi and rt is the reward received at time t. In some restricted cases3,
this can be accomplished by solving numerically or analytically the
system of the Bellman equations:

Qπi(s, a) = R(s, a) + γ

∫
S
P(s, a, s′)V πi(s′)ds′ (1)

V πi(s) =

∫
A
πi(s, a)Qπi(s, a)da (2)

The integrals over state and action spaces are replaced by finite
sums in the discrete case. The right-hand side of the equations ap-
plied to a given state(-action) value function for a policy π define
the Bellman operators denoted by Tπ . Alternatively, one can em-
ploy Monte Carlo methods by sampling multiple trajectories (i.e. a
sequence s0a0r0s1 . . . of states, actions and rewards) and evaluate
the expectations by taking the average value over such roll-outs, or
use temporal difference learning in which the Bellman equations are
considered as update rules and state(-action) value function estimate
is successively updated based on the previous estimates.

In the policy improvement step, the state(-action) value function
obtained in the policy evaluation step is used to derive a new pol-
icy πi+1 which would perform at least as well as πi, i.e. satisfies
V πi+1(s) ≥ V πi(s) for all s ∈ S. For a deterministic policy, this
can be realized by defining πi+1 greedy with respect to Qπi as

πi+1(s) = arg max
a∈A

Qπi(s, a) (3)

Policy iteration is guaranteed to converge to an optimal policy in
a finite number of steps if both state and action spaces are finite, the
value function and the policy are represented perfectly and the policy
evaluation step is solved exactly. However, in most cases it may not
be possible to fulfill these requirements (eg. in problems with large
or infinite state and action spaces) and the value function and/or the
policy need to be approximated, leading to the so-called approxi-
mate policy iteration approach. It has been shown that if the error
in the approximations are bounded then approximate policy iteration
generates policies such that their performance is also bounded with
respect to the optimal policy, yet the performance bound can be arbi-
trarily large as the discount factor, γ, gets closer to 1 [2, 15].
3 Such as problems with finite and small state-action spaces, or linear

quadratic optimal control problems in which the underlying MDP model
is known.

2.2 Least-Squares Policy Iteration
Least-Squares policy iteration (LSPI) is an off-line and off-policy
approximate policy iteration algorithm proposed by Lagoudakis and
Parr (2003). Rather than relying on continual interactions with the
environment or a generative model, it works on a fixed set of samples
collected arbitrarily. Each sample is of the form (s, a, r, s′) indicat-
ing that executing action a at state s resulted in a transition to state
s′ with an immediate reward of r. The state-action value function is
approximated by a linear form

Q̂π(s, a) =

m−1∑
j=0

wjφj(s, a)

where φj(s, a) denote the basis functions andwj ∈ R are the param-
eters. Basis functions, also called features, are arbitrary functions of
state-action pairs, but are intended to capture the underlying struc-
ture of the target function and can be viewed as doing dimensional-
ity reduction from a larger space to <m. Typical examples of basis
functions are polynomials of a given degree or radial basis functions,
such as Gaussian and multi-quadratics, each possibly associated with
a different center and scale. Note that, in the case of discrete state-
action spaces, this generic form also includes tabular representations
as a special case, but in general the number of basis functions, m, is
much smaller compared to |S| |A|.

Instead of representing the policy explicitly, LSPI opts to deter-
mine the action that is imposed by the current policy at a given state
by directly evaluating Eq. 3 (hence the policy improvement step be-
comes inherent). This may not be a feasible operation when the num-
ber of actions is large or possibly infinite, except in certain cases
where a closed form solution is achievable; however, in many situa-
tions, this drawback may not pose a significant problem as the action
space is generally less susceptible to discretization compared to the
state space.

Given a policy πi+1, greedy with respect to Q̂πi which is defined
by the set of parameters wπij , LSPI performs the policy evaluation
step and determines Q̂πi+1 , in other words the corresponding set
of new parameters wπi+1

j , by invoking an algorithm called LSTDQ.
One can easily observe that by definition the state-action value func-
tionQπ of a policy π is necessarily a fixed point of the Bellman oper-
ator, i.e. Qπ = TπQ

π (Eq. (1)), which also holds for Qπi+1 . Due to
the specific choice of linear function approximation, any Q̂π is con-
fined to the subspace spanned by the basis functions {φj∈{1,...,m}},
and therefore, an approximation Q̂πi+1 to Qπi+1 which stays invari-
ant under the Bellman operator may not exist. Instead, LSTDQ tries
to find an approximation Q̂πi+1 which is equal to the orthogonal
projection of its image under the Bellman operator. Such Q̂πi+1 also
possesses the property that

Q̂πi+1 = arg min
Q̂π

‖Tπi+1Q̂
πi+1 − Q̂π‖2

A motivation for choosing this particular approximation is expressed
as the expectation that the approximation should be close to the pro-
jection of Qπi+1 onto the subspace spanned by the basis functions
if subsequent applications of the Bellman operator point in a simi-
lar direction. Without going into the details, given any N samples,
LSTDQ finds Q̂πi+1 by solving the m×m system

Ãwπi+1 = b̃

where φ(s, a) = [φ0(s, a)φ1(s, a) . . . φm−1(s, a)]> is the row vec-

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

10

Algorithm 1 The LSPI algorithm.

Require: S: Set of samples, ~φ: basis functions, γ: discount factor.
1: function LSTDQ(S, ~φ, γ, πw) . πw is the policy

parameterized by w.

2: Ã← 0,~̃b← 0 . Ã is a |~φ| × |~φ| matrix and ~̃b is a |~φ| × 1
vector.

3: for each (s, a, r, s′) ∈ S do . Iterate over the sample set
4: Ã← Ã+ φ(s, a) [φ(s, a)− γφ(s′, πw(s′))]

T

5: ~̃b← ~̃b+ φ(s, a)r
6: end for
7: return Ã−1~̃b . parameters of the new policy
8: end function
9:

10: function LSPI(S, ~φ, γ)
11: i← 0
12: ~w0 ← initial weights
13: repeat . Update the policy until it converges.
14: i← i+ 1
15: ~wi ← LSTDQ(S, ~φ, γ, πwi−1)
16: until ‖wi − wi−1‖ < ε or i > imax . ε is the accuracy

threshold.
17: return wi
18: end function

tor of basis functions evaluated at (s,a), and

Ã =
1

N

N∑
i=1

[
φ(si, ai)

(
φ(si, ai)− γφ(s′i, πi+1(s′i))

)>]
,

b̃ =
1

N

N∑
i=1

φ(si, ai)ri,

both of which in the limit converge to the matrices of the least-
squares fixed-point approximation obtained by replacing Q̂πi+1 =
Φwπi+1 in the system

Q̂πi+1 = Φ(Φ>Φ)−1Φ>(Tπi+1Q̂
πi+1)

Here, Φ(Φ>Φ)−1Φ> is the orthogonal projection and Φ denotes the
matrix of the values of the basis functions evaluated for the state-
action pairs. The details of the derivation can be found in the seminal
paper [10].

The LSPI algorithm presented in Algorithm 1 has been demon-
strated to provide “good” policies within relatively small number of
iterations. Furthermore, as it is possible to use a single and common
sample set for all policy evaluations, LSPI makes efficient use of the
available data; as such, it is quite suitable for problems in which data
gathering process is time consuming and costly. However, the quality
of the resulting policies depends on two important factors: the basis
functions, and the distribution of the samples.

In an off-line setting, one may not have any control on the set of
samples and too much bias in the samples would inevitably reduce
the performance of the learned policy. On the other hand, in an on-
line setting, LSPI allows different sample sets to be employed at each
iteration; thus, it is possible to fine tune the trade-off between explo-
ration and exploitation by collecting new samples using the current
policy.

Regarding the basis functions, the user is free to choose any set
of functions as long as they are linearly independent (a restriction
which can be relaxed in most cases by applying singular value de-
composition). As shown in [10], and in accordance with the generic

performance bound on policy iteration, if the error between the ap-
proximate and the true state-action value functions at each iteration
is bounded by a scalar ε, then in the limit the error between the opti-
mal state-action value function and those corresponding to the poli-
cies generated by LSPI is also bounded by a constant multiple of ε.
Therefore, selecting a “good” set of basis functions has a significant
and direct effect on the success of the method.

In general, the set of basis functions is defined by the user based on
domain knowledge, and usually in a trial and error fashion. They can
either be fixed, or one can start from an initial subset of predefined
basis functions and iteratively introduce remaining functions based
on the performance of the current set, so-called feature iteration ap-
proach [1]. However, as the complexity of the problem increases it
also gets progressively more difficult to come up with a good set of
basis functions. Generic approaches, such as regular grids or regular
radial basis function networks, which are quite successful in small
problems, become impractical due to the exponential growth of the
state-action spaces with respect to their dimension. Therefore, given
a problem, it is highly desirable to determine a compact set of such
basis functions automatically. In the next section, we will first de-
scribe a particular class of function approximators called cascade-
correlation networks, and then present how they can be utilized in
the LSPI algorithm to iteratively expand the set of basis functions.

3 Cascade Correlation Networks

Cascade correlation is both an architecture and a supervised learning
algorithm for artificial neural networks introduced by [4]. It aims to
overcome step-size and moving target problems that negatively affect
the performance of back-propagation learning algorithm. Similar to
traditional neural networks, the neuron is the most basic unit in cas-
cade correlation networks. However, instead of having a predefined
topology with the weights of the fixed connections between neurons
getting adjusted, a cascade correlation network starts with a minimal
structure consisting only of an input and an output layer, without any
hidden layer. All input neurons are directly connected to the output
neurons (Figure 1a). Then, the following steps are taken:

1. All connections leading to output neurons are trained on a sam-
ple set and corresponding weights (i.e. only the input weights of
output neurons) are determined by using an ordinary learning al-
gorithm until the error of the network no longer decreases. This
can be done by applying the regular “delta” rule, or using more
efficient methods such as quick-prop or RPROP. Note that, only
the input weights of output neurons (or equivalently the output
weights of input neurons) are being trained, therefore there is no
back-propagation.

2. If the accuracy of the network is above a given threshold then the
process terminates.

3. Otherwise, a set of candidate units is created. These units typically
have non-linear activation functions, such as sigmoid or Gaussian.
Every candidate unit is connected with all input neurons and with
all existing hidden neurons (which is initially empty); the weights
of these connections are initialized randomly. At this stage the
candidate units are not connected to the output neurons, and there-
fore are not actually active in the network. Let s denote a training
sample. The connections leading to a candidate unit are trained
with the goal of maximizing the sum S over all output units o of
the magnitude of the correlation between the candidate units value
denoted by vs, and the residual error observed at output neuron o

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

11

o

i1

i2

o

i1

h1

i2

(a) (b)

o

i1

h1
h2

i2

(c)

Figure 1. (a) Initial configuration of a simple cascade-correlation network
with two inputs and a single output (in gray). (b) and (c) show the change in

the structure of the network as two new hidden nodes are subsequently
added. Solid edges indicate input weights that stay fixed for ever, after the
candidate training phase, whereas dashed edges will be further trained: the
edges undergoing this ongoing weight training are precisely those that are

connected to the inputs of the output unit.

denoted by es,o. S is defined as

S =
∑
o

|
∑
s

(vs − v)(es,o − eo)|

where v and eo are the values of vs and es,o averaged over all
samples, respectively. As in step 1, learning takes place with an
ordinary learning algorithm by performing gradient ascent with
respect to each of the candidate units incoming weights:

∂S

∂wi
=
∑
s,o

(es,o − eo)σof ′sIi,s

where σo is the sign of the correlation between the candidates
value and output o, f ′s is the derivative for sample s of the can-
didate units activation function with respect to the sum of its in-
puts, and Ii,s is the input the candidate unit received from neuron
i for sample s. Note that, since only the input weights of can-
didate units are being trained there is again no need for back-
propagation. Besides, it is also possible to train candidate units
in parallel since they are not connected to each other. By train-
ing multiple candidate units instead of a single one, different parts
of the weight space can be explored simultaneously. This conse-
quently increases the probability of finding neurons that are highly
correlated with the residual error. The learning of candidate unit
connections stops when the correlation scores no longer improve
or after a certain number of passes over the training set. Now, the
candidate unit with the maximum correlation is chosen, its incom-
ing weights are frozen (i.e. they are not updated in the subsequent
steps) and it is added permanently to the network by connecting
it to all output neurons (Figure 1b and c). The initial weights of
these connections are determined based on the value of correla-
tion of the unit. All other candidate units are discarded.

4. Return back to step 1.

Until the desired accuracy is achieved at step 2, or the number of
neurons reaches a given maximum limit, a cascade correlation net-
work completely self-organizes itself and grows as necessary. One

can easily observe that, by adding hidden neurons one at a time and
freezing their input weights, training of both the input weights of
output neurons (step 1) and the input weights of candidate units (step
3) reduce to one step learning problems. Since there is no error to
back-propagate to previous layers the moving target problem is ef-
fectively eliminated. Also, by training candidate nodes with different
activation functions and choosing the best among them, it is possible
to build a more compact network that better fits the training data.

One observation here is that, unless any of the neurons has a
stochastic activation function, the output of a neuron stays constant
for a given sample input. This brings the possibility of storing the out-
put values of neurons which in return reduces the number of calcula-
tions in the network and improve the efficiency drastically compared
to traditional multi-layer back-propagation networks, especially for
large data sets. But more importantly, each hidden neuron effectively
becomes a permanent feature detector, or to put it another way, a
basis function in the network; the successive addition of hidden neu-
rons in a cascaded manner allows, and further, facilitates the creation
of more complex feature detectors that helps to reduce the error and
better represent the functional dependency between input and output
values. We would like to point out that, this entire process does not
require any user intervention and is well-matched to our primary goal
of determining a set of good basis functions for function approxima-
tion is RL, in particular within the scope of LSPI algorithm. We will
now describe our approach for realizing this.

4 Using Cascade Correlation Learning
Architecture in LSPI

As described in Section 2, in LSPI the state-action value function
of a given policy is approximated by a linear combination of basis
functions. Our aim here is to employ cascade correlation networks
as function approximators and at the same time use them to find use-
ful basis functions in LSPI. Given a reinforcement learning prob-
lem, suppose that we have a set of state-action basis functions Φ =
{φ1(s, a), φ2(s, a), . . . , φm(s, a)}. Using this set of basis functions
and applying LSPI algorithm on a set of collected samples of the
form (s, a, r, s′), we can find a set of parameters {wi}i∈{1,...,m} to-
gether with an approximate state-action value function

Q̂(s, a) =

m∑
i=1

wiφi(s, a)

and derive a policy π̂ which is greedy with respect to Q̂. Let N be a
cascade correlation network withm inputs and a single output having
linear activation function. In this case, the output of the network is a
linear combination of the activation values of input and hidden neu-
rons of the network weighted by their connection weights. Initially,
the network does not have any hidden neurons and all input neurons
are directly connected to the output neuron. Therefore, by setting the
activation function of the ith input neuron to φi and the weight of
its connection to the output neuron to wi, N becomes functionally
equivalent to Q̂ and outputs Q̂(s, a) when input neurons receive the
(s, a) tuple as their input.

Now, the Bellman operator Tπ is known to be a contraction in L∞
norm, that is for any state-action value function Q, TπQ is closer to
Qπ in the L∞ norm, and in particular as mentioned in Section 2, Qπ

is a fixed point of Tπ . Ideally, a good approximation would be close
to its image under the Bellman operator. As opposed to the Bell-
man residual minimizing approximation, least-squares fixed-point
approximation, which is at the core of the LSPI algorithm, ignores

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

12

the distance between Tπ̂Q̂ and Q̂ but rather focuses on the direction
of the change. Note that, if the true state-action value function Qπ

lies in the subspace spanned by the basis functions, that is the set
of basis functions is “rich” enough, fixed-point approximation would
be solving the Bellman equation and the solution would also mini-
mize the magnitude of the change. This hints that, within the scope
of LSPI, one possible way to drive the search towards solutions that
satisfy this property could be to expand the set of basis functions
by adding new basis functions that are likely to reduce the distance
between the found state-action value function Q̂ and Tπ̂Q̂ over the
sample set.

For this purpose, given a sample (s, a, r, s′), in the cascade corre-
lation network we can set r + γQ̂(s′, π̂(s′)) as the target value for
(s, a) tuple, and train candidate units that are highly correlated with

the residual output error, i.e. Q̂(s, a)−
(
r+ γQ̂(s′, π̂(s′))

)
. At the

end of the training phase, the candidate unit having the maximum
correlation is added to the network by transforming it into a hidden
neuron, and becomes the new basis function φm+1; φm+1(s, a) can
be calculated by feeding (s, a) as input to the network and deter-
mining the activation value of the hidden neuron. Through another
round of LSPI learning, one can obtain a new least-squares fixed-
point approximation to the state-action value function Q̂′(s, a) =∑m+1
i=1 w′iφi(s, a) which is more likely to be a better approximation

also in the sense of Bellman residual minimization. The network is
then updated by setting the weights of connections leading to the
output neuron to w′i for each basis function. This process can be re-
peated, introducing a new basis function at each iteration, until the
error falls below a certain threshold, or a policy with adequate per-
formance is obtained.

We can regard this as a hybrid learning system, in which the
weights of connections leading to the output neuron of the cascade
correlation network are being regulated by the LSPI algorithm. Note
that, the values of all basis functions for a given (s, a) tuple can be
found with a feed-forward run over the network, and as stated be-
fore can be cached for efficiency reasons if desired. The complete
algorithm that incorporates the cascade correlation network and ba-
sis function expansion to LSPI is presented in Algorithm 2.

Algorithm 2 The LSPI algorithm with basis function expansion us-
ing cascade correlation network.

Require: S: Set of samples, ~φinitial: initial basis functions, γ: dis-
count factor, n: number of candidate units.

1: Create a cascade correlation network N with |~φinitial| inputs
and a single output, and set activation functions of input unit i to
φi,∀i ∈ {1, ..., n}.

2: ~φ← ~φinitial
3: repeat
4: w ← LSPI(S, ~φ, γ)
5: Set the weight of connection between the ith unit and the

output inN to wi.
6: Calculate the residual error, Q̂(s, a)−(r+γQ̂(s′, πw(s′))),

over S.
7: Train n candidate units onN .
8: κ ← Candidate unit having the maximum correlation with

the residual error.
9: Add κ toN .

10: Add φκ to ~φ . φκ is the function represented by κ.
11: until termination condition is satisfied
12: return w and φ

One possible problem that may emerge with the proposed method
is that, especially when the sample set is small, with increasingly
complex basis functions there may be over-fitting, and the on-
line performance of the resulting policy may degrade. This can be
avoided by increasing the amount of samples, or alternatively a cross-
validation approach can be ensued. Suppose that for a particular rein-
forcement learning problem, we are given multiple sample sets. The
intuition is that a set of “good” basis functions should give rise to
“good” policies and similar value functions for all sample sets. By
applying LSPI algorithm independently on each sample set but train-
ing a single set of candidate units over all sample sets, in other words
having a common set of basis functions, one can obtain basis func-
tions, and consequently policies, that are less biased to training data.

5 Experiments

We have evaluated the proposed method on three problems: chain
walk [10], pendulum swing-up and multi-segment swimmer [3].

Chain walk is an MDP consisting of a chain of n states. There are
two actions, left and right, which succeed with probability 0.9, or
else fail, moving to the state in the opposite direction. The first and
last states are dead-ends, i.e. going left at the first state, or right at the
last state revert back to the same state. The reward is 1 if an action
ends up in a predefined set of states, and 0 otherwise.

The pendulum swing-up and multi-segment swimmer problems
are dynamical systems where the state is defined by the position and
velocity of the elements of the system, and actions (applied forces)
define the next state. These are non-linear control tasks with contin-
uous state spaces.

In pendulum, the aim is to keep a simple pendulum actuated by a
bounded torque in vertical upright position. Since the torque avail-
able is not sufficient, the controller has to swing the pendulum back
and forth to reach the goal position. The state variables are the angle
of the pendulum and its angular speed. We used two discrete actions,
applying a torque of -5, and 5. The reward is defined as the cosine
of the angle of the pole. We follow the definition of this task given
in [3].

Figure 2. The swimmer is actually a multi-segmented body. One of the
extremities is considered the head of the swimmer. Each segment is rigid.
Forces applied at each joint make the whole body move. A simplistic fluid

dynamics is simulated. The goal is to to swim as fast as possible in the
horizontal direction. Commonly investigated swimmers are made of 3-7

segments.

In swimmer, a somewhat “idealized” swimmer (see Fig. 2) mov-
ing in a two dimensional pool is being simulated. The swimmer is
made of n (n ≥ 3) segments connected to each other with n − 1
joints. The goal is to swim as fast as possible to the right by apply-
ing torques to these joints and using the friction of the water. There
are 2n + 2 state variables consisting of (i) horizontal and vertical
velocities of the center of mass of the swimmer, (ii) n angles of its
segments with respect to vertical axis and (iii) their derivatives with

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

13

respect to time; the actions are the n− 1 torques applied at segment
joints. The reward is equal to the horizontal velocity of the swimmer.
The system dynamics and more detailed information about Swimmer
problem can be found in [3].

In all problems, we started from a set of basis functions consisting
of the following:

1. a constant bias function (i.e. 1),
2. a basis function for each one of the state variables, which returns

the normalized value of that variable, and
3. a basis function for each possible value of each control variable,

which returns 1 if the corresponding control variable in the state-
action tuple is equal to that value, and 0 otherwise.

Therefore, the number of the initial basis functions were 4
(1+1+2), 5 (1+2+2) and 3 + 4n for chain, pendulum and swim-
mer problems respectively, where n is the number of swimmer seg-
ments. In the LSPI algorithm, we set ε = 0.0001 and limit the num-
ber of iterations to 20. The samples for each problem are collected
by running a random policy, which uniformly selects one of pos-
sible actions, for a certain number of time steps (or episodes). In
cascade correlation network, we trained an equal number of candi-
date units having Gaussian and sigmoid activation functions using
RPROP method [18]. In RPROP, instead of directly relying on the
magnitude of the gradient for the updates (which may lead to slow
convergence or oscillations depending on the learning rate), each
parameter is updated in the direction of the corresponding partial
derivative with an individual time-varying value. The update val-
ues are determined using an adaptive process that depends on the
change in the sign of the partial derivatives. We allowed at most
100 passes over the sample set during the training of candidate units,
and employed the following parameters: 4min = 0.0001,4ini =
0.01,4max = 0.5, η− = 0.5, η+ = 1.2. Although we opted for
the regular RPROP algorithm, it is also possible to use improved and
more robust versions [7].

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

va
lu

e

state

L
R

Figure 3. 50-state chain. (State-action value functions with 20 basis
functions (top), and policy after every 2 basis functions (bottom).

Figure 3 shows the results for the 50-state (numbered from 0 to 49)
chain problem using 5000 samples from a single trajectory. Reward

is given only in states 9 and 40, therefore the optimal policy is to go
right in states 0-8 and 25-40, and left in states 9-24 and 41-49. The
number of candidate units was 4. In [10], using 10000 samples LSPI
fails to converge to the optimal policy with polynomial basis function
of degree 4 for each action, due to the limited representational capa-
bility, but succeeds with a radial basis function approximator having
22 basis functions. Using cascade-correlation basis expansion, after
10 basis functions near-optimal policies can be obtained and after 20
basis functions it converges to the optimal policy. The basis functions
start from simpler ones and get more complex in order to better fit the
target function.

-60
-40
-20

 0
 20
 40
 60
 80

 100
 120
 140

 5 10 15 20 25 30 35 40 45 50 55

av
g.

 to
ta

l r
ew

ar
d

of basis functions

rbf (5000 samples)
rbf (10000 samples)

5000 samples
10000 samples

Figure 4. The progress of learned policies after each new basis function in
the pendulum problem.

The results for the pendulum problem are presented in Figure 4.
For this problem, we collected two different sets of samples of size
5000 and 10000, restarting from a random configuration every 20
time steps, and trained 10 candidate units. For both data sets, we also
run LSPI using a radial basis function approximator on a 16 × 16
regular grid for each action. This corresponds to a set of 514 basis
functions, including two bias terms. The performance of the result-
ing policies are evaluated by running 1000 episodes of 250 time steps
each, and calculating the average of total reward. In the figure, we

-4 -3 -2 -1 0 1 2 3 4-10-8
-6-4-2 0 2 4 6 8 10

-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12

 10
 5
 0
 -5

Figure 5. Q̂(s, π̂(s)) for the pendulum problem where π̂ is the resulting
policy. Although reward formulation is slightly different, see [3] for

comparison.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

14

present average over 30 such independent runs. As it can be clearly
seen from Figure 4, with less number of samples the performance
of policies obtained by radial basis function approximator decrease
drastically. On the other hand, for both cases, the performance of the
policies found by LSPI algorithm using the discovered basis func-
tions converge to the same level. We also observe a consistent im-
provement as new basis functions are added (except in the very first
iterations), yielding better performance levels using much less num-
ber of basis functions (10 and about 20 basis functions in case of
5000 and 10000 samples, respectively). Also, the value function ob-
tained after 40 iterations is very close to the true one and successfully
captures the shape of the function including the sharp edges around
the ridge (Figure 5).

-25

-20

-15

-10

-5

 0

 5

 10

 0 5 10 15 20 25 30 35 40

re
w

ar
d

iteration

Figure 6. The results for the 5-segment swimmer.

We observed a similar behavior on more complex 5-segment
swimmer problem as presented in Figure 6. For this problem, we col-
lected 100000 samples restarting from a random configuration every
50 time steps. The number of trained candidate units was 10 as in the
pendulum problem, but we allowed RPROP to make more passes (a
maximum of 200) over the sample set. We again evaluated the poli-
cies by running 1000 episodes of 250 time steps each, and calculating
the average of total reward.

6 Related Work
Basis function, or feature, selection and generation is essentially an
information transformation problem; the input data is converted into
another form that “better” describes the underlying concept and rela-
tionships, and “easier” to process by the agent. As such, it can be
applied as a preprocessing step to a wide range of problems and
have been in the interest of the data-mining community, in particular
for classification tasks. Following the positive results obtained using
efficient methods that rely on basis functions (mostly, using linear
approximation architectures) in various domains, it also recently at-
tracted attention from the RL community.

In [14], Menache et al. examined adapting the parameters of a
fixed set of basis functions (i.e, center and width of Gaussian radial
basis functions) for estimating the value function of a fixed policy.
In particular, for a given set of basis function parameters, they used
LSTD(λ) to determine the weights of basis functions that approxi-
mate the value function of a fixed control policy, and then applied ei-
ther a local gradient based approach or global cross-entropy method

to tune the parameters of basis functions in order to minimize the
Bellman approximation error in a batch manner. The results of ex-
periments on a grid world problem show that cross-entropy based
method performs better compared to the gradient based approach.

In [9], Keller et al. studied automatic basis function construction
for value function approximation within the context of LSTD. Given
a set of trajectories and starting from an initial approximation, they
iteratively use neighborhood component analysis to find a mapping
from the state space to a low-dimensional space based on the esti-
mation of the Bellman error, and then by discretizing this space ag-
gregate states and use the resulting aggregation matrix to derive ad-
ditional basis functions. This tends to aggregate states that are close
to each other with respect to the Bellman error, leading to a better
approximation by incorporating the corresponding basis functions.

In [16], Parr et al. showed that for linear fixed point methods, itera-
tively adding basis functions such that each new basis function is the
Bellman error of the value function represented by the current set of
basis functions forms an orthonormal basis with guaranteed improve-
ment in the quality of the approximation. However, this requires that
all computations are exact, in other words, are made with respect to
the precise representation of the underlying MDP. They also provide
conditions for the approximate case, where progress can be ensured
for basis functions that are sufficiently close to the exact ones. Their
application in the approximate case on LSPI is closely related to our
work, but differs in the sense that a new basis function for each ac-
tion is added at each policy-evaluation phase by directly using locally
weighted regression to approximate the Bellman error of the current
solution.

In contrast to these approaches that make use of the approxima-
tion of the Bellman error, including ours, the work by Mahadevan et
al. aims to find policy and reward function independent basis func-
tions that captures the intrinsic domain structure that can be used
to represent any value function [12, 8, 13]. Their approach origi-
nates from the idea of using manifolds to model the topology of the
state space; a state space connectivity graph is built using the sam-
ples of state transitions, and then eigenvectors of the (directed) graph
Laplacian with the smallest eigenvalues are used as basis functions.
These eigenvectors possess the property of being the smoothest func-
tions defined over the graph and also capture the nonlinearities in the
domain, which makes them suitable for representing smooth value
functions.

To the best of our knowledge, the use of cascade correlation net-
works in reinforcement learning has rarely been investigated before.
One existing work that we would like to mention is by Rivest and
Precup (2003), in which a cascade correlation network together with
a lookup-table is used to approximate the value function in an on-line
temporal difference learning setting [19]. It differs from our way of
utilizing the cascade correlation learning architecture to build basis
functions in the sense that in their case, cascade correlation network
purely functions as a cache and an approximator of the value func-
tion, trained periodically at a slower scale using the state-value tuples
stored in the lookup-table.

Finally, we are currently investigating various tracks in our own
team. In particular, we would like to mention the use of genetic
programming to build useful basis of features [6]. Using a genetic
programming approach opens the possibility to obtain automatically
human-understandable features. We also investigate a kernelized ver-
sion of the LARS algorithm [11]. This basically selects the set of
best features to represent a given function, according to set of sample
datapoints; the features are automatically generated as in any kernel
method. Furthermore, our approach is neither restricted to LSPI, nor

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

15

value-based reinforcement learning; [5] demonstrates that the same
kind of approach may be embedded in natural actor-critics.

7 Conclusion
In this paper, we explored a new method that combines cascade cor-
relation learning architecture with least-squares policy iteration algo-
rithm to find a set of basis function that would lead to a better approx-
imation of the state-action value function, and consequently results
in policies with better performance. The experimental results indi-
cate that it is effective in discovering such functions. An important
property of the proposed method is that the basis function generation
process requires little intervention and tuning from the user.

In the proposed method, LSPI is run to completion at each iter-
ation, and then a new basis function is generated using the cascade
correlation training (Algorithm 2). This benefits from a better ap-
proximation for the current set of basis functions. An alternative ap-
proach would be to add new basis functions within the LSPI loop
after the policy evaluation step. This may lead to better intermediate
value functions and steadier progress towards the optimal solution,
but the resulting basis functions may not be useful at later iterations.
It is also possible to combine both approaches by temporarily adding
new basis functions within the LSPI loop and then discarding them.
We are currently investigating these possibilities.

Although, our focus was on LSPI algorithm in this paper, the ap-
proach is in fact more general and can be applied to other reinforce-
ment learning algorithms that approximate the state(-action) value
function with a linear architecture. We pursue future work in this di-
rection and also apply the method to more complex domains.

REFERENCES
[1] Dimitri Bertsekas and Sergey Ioffe, ‘Temporal differences-based policy

iteration and applications in neuro-dynamic programming’, Technical
Report LIDS-P-2349, MIT, (1996).

[2] Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, MA, 1996.

[3] Rémi Coulom, Reinforcement Learning Using Neural Networks with
Applications to Motor Control, Ph.D. dissertation, Institut National
Polytechnique de Grenoble, 2002.

[4] Scott E. Fahlman and Christian Lebiere, ‘The cascade-correlation learn-
ing architecture’, in Advances in Neural Information Processing Sys-
tems, ed., D. S. Touretzky, volume 2, pp. 524–532, Denver 1989,
(1990). Morgan Kaufmann, San Mateo.

[5] Sertan Girgin and Philippe Preux, ‘Basis expansion in natural actor
critic methods’, in Proceedings of the 8th European Workshop on Re-
inforcement Learning, (June 2008).

[6] Sertan Girgin and Philippe Preux, ‘Feature discovery in reinforcement
learning using genetic programming’, in Proceedings of Euro-GP, vol-
ume 4971 of LNCS, pp. 218–229. Springer-Verlag, (March 2008).

[7] Christian Igel and Michael Husken, ‘Empirical evaluation of the im-
proved rprop learning algorithms’, Neurocomputing, 50, 105–123(19),
(January 2003).

[8] Jeff Johns and Sridhar Mahadevan, ‘Constructing basis functions from
directed graphs for value function approximation’, in ICML ’07: Pro-
ceedings of the 24th international conference on Machine learning, pp.
385–392, New York, NY, USA, (2007). ACM.

[9] Philipp W. Keller, Shie Mannor, and Doina Precup, ‘Automatic basis
function construction for approximate dynamic programming and re-
inforcement learning’, in ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, pp. 449–456, New York, NY,
USA, (2006). ACM.

[10] Michail G. Lagoudakis and Ronald Parr, ‘Least-squares policy itera-
tion’, Journal of Machine Learning Research, 4, 1107–1149, (2003).

[11] Manuel Loth, Manuel Davy, and Philippe Preux, ‘Sparse temporal dif-
ference learning using LASSO’, in Proceedings of the IEEE Interna-
tional Symposium on Approximate Dynamic Programming and Rein-
forcement Learning, (April 2007).

[12] Sridhar Mahadevan, ‘Representation policy iteration.’, in UAI, pp. 372–
379. AUAI Press, (2005).

[13] Sridhar Mahadevan and Mauro Maggioni, ‘Proto-value functions: A
laplacian framework for learning representation and control in markov
decision processes’, Journal of Machine Learning Research, 8, 2169–
2231, (2007).

[14] Ishai Menache, Shie Mannor, and Nahum Shimkin, ‘Basis function
adaptation in temporal difference reinforcement learning’, Annals of
Operations Research, 134, 215–238(24), (February 2005).

[15] Rémi Munos, ‘Error bounds for approximate policy iteration’, in ICML
’03: Proceedings of the 20th international conference on Machine
learning, eds., Tom Fawcett and Nina Mishra, pp. 560–567. AAAI
Press, (2003).

[16] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael
Littman, ‘Analyzing feature generation for value-function approxima-
tion’, in ICML ’07: Proceedings of the 24th international conference on
Machine learning, pp. 737–744, New York, NY, USA, (2007). ACM.

[17] Martin L. Puterman, Markov Decision Processes — Discrete Stochastic
Dynamic Programming, Wiley, 1994.

[18] Martin Riedmiller and Heinrich Braun, ‘A direct adaptive method for
faster backpropagation learning: the rprop algorithm’, pp. 586–591
vol.1, (1993).

[19] François Rivest and Doina Precup, ‘Combining td-learning with
cascade-correlation networks’, in ICML ’03: Proceedings of the 20th
international conference on Machine learning, eds., Tom Fawcett and
Nina Mishra, pp. 632–639. AAAI Press, (2003).

[20] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998. A Bradford Book.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

16

Application of Reinforcement Learning in a Real
Environment Using an RBF Network

Sebastian Papierok1 and Anastasia Noglik2 and Josef Pauli2

Abstract. The application of reinforcement learning algorithms in
the context of robot behaviour learning is a poorly explored and very
promising area of research. In the present work the learned strategy
which resulted from simulation has been applied in a real world envi-
ronment. To achieve good results in the real world it was necessary to
build a simulation environment which mirrors the reality up to a prac-
ticable degree. We use a radial basis function network to approximate
the action-value function. To enforce a robot to learn a desired behav-
ior a special online reward model has been developed. The approach
reality-simulation-reality has been used to optimise the learning pro-
cess in the simulation and apply the method in reality afterwards.
Additionally the advantages and disadvantages of the application of
the RBF-features over coarse coding with binary features have been
examined.

1 Introduction

This article deals with a robot navigation problem in which an intel-
ligent system should learn autonomously to navigate a mobile robot
through a test track without collisions and in adequate time. For
perception of the environment the robot’s infrared sensors are used
whose data are very noisy. A similar problem was considered in a
simulation in [6]. Environment perception could also be done e.g.
visual-based [1].

To realise reinforcement learning [9] the popular Sarsa(λ) ap-
proach will be applied in our studies. The action-value function will
be approximated with an RBF network [7] [5], which will be used to
control the robot’s drive system. Because of the short training time
and high accuracy of the RBF neural networks this method can be
applied on real-time problems. The noisy sensor values will be con-
verted here into a control-signal. This method doesn’t need any infor-
mation about the position and orientation of the infrared sensors so
that a high level of flexibility can be ensured for the complete system.

The simulation should stick to the reality as closely as possible
in order to make this method applicable on the real robot at a later
time. For these purposes recorded real sensor data will be used in
the simulation in order to use the learned control network in real-
ity without the need for any further adaptation steps (see also [4]).
This approach is described in [8] as virtual prototyping. An advan-
tage of this approach is that the implemented algorithm can be tested
under ideal conditions to determine appropriate learning parameters
and clear potential faults as well. Afterwards, the complete learning
process will take place in the real world environment.

1 email: sebastian.papierok@stud.uni-due.de
2 Universität Duisburg-Essen, Lehrstuhl Intelligente Systeme, Germany,

email: {anastasia.noglik, josef.pauli}@uni-due.de

The applied fitness function for evolutionary algorithms from [2]
was used as a basis for the development of an online reward model
in this work. In [2] a control program for a similar problem at which
a population-based EANT approach is applied was developed. There
the EA approach was used to create a neural network that controls
the robot’s drive system. However, the downside of this method is
that the learning process is very complex in reality. As an example:
for a single episode 100 robots and 100 runs become necessary.

Practical experiments show that robustness and learning ability of
the robot perform better by applying behaviour learning with RBF
networks in comparison to coarse coding approximation. The appli-
cation of an online reward model shows promising results.

2 Background of Reinforcement Learning
2.1 The Reinforcement Learning Problem
In the field of reinforcement learning an agent should learn au-
tonomously to achieve specific goals. The agent observes the current
state of the environment and makes action decisions depending on
the current state. As a reaction for the executed actions the agent re-
ceives the next state and a numerical reward. By means of the reward
the agent can evaluate its action decisions and improve its behavior
over time. An appropriate reward model is needed in order to ensure
that the agent achieves the given goals. The agent’s objective is to
maximize the sum of the rewards, also referred to as return, over the
time. RL algorithms therefore try to estimate the expected return with
the aid of so-called value functions.

2.2 Temporal Difference Learning
Temporal difference methods (TD methods) don’t need a predefined
model of the environment. They learn only by the experience that the
agent gains by interacting with the environment. Moreover the agent
can use its new experiences immediately to improve its behaviour.
For estimation of the value function the states and rewards that the
agent observes while interacting with the environment are used:

Q(st, at)← Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at))

By using continuous state spaces function approximators are used
for estimating the value function based on samples that are observed
during the interaction between agent and environment. Function ap-
proximators have a generalisation-ability so that the learning process
occurs not only for one state-action pair but also for similar state-
action pairs. The agent therefore must not visit all state-action pairs
to make good action decisions. A function approximator can be con-
sidered as a function that is dependent on a real-valued parameter
vector.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

17

At TD methods the agent can use his new experiences immedi-
ately. Therefore, a method is needed that allows an incremental adap-
tation of the approximated value function. For this purpose func-
tion approximators in conjunction with gradient-descent methods are
used.

2.3 Linear Approximation of the Value Function
The approximated value function depends linearly on the parameter
vector of the function approximator. The relation between the param-
eter vector and the real states will be described by so-called features
that are collected in a feature vector. The features are distributed in
the real state space and have a determined dimension and shape. Usu-
ally they are reciprocally arranged so that each possible state will be
described at least by one feature.

When applying coarse coding the features can hold only the values
0 and 1 and are hence described as binary features. A feature has the
value 1 if it represents the current state or 0 if not.

Radial basis functions are a generalisation of coarse coding. The
co-domain of this features is located in the intervall [0,1]. An RBF-
feature i can be defined as a Gauss error distribution curve that has a
given width σi and position ci:

φs(i) = exp

(
−‖s− ci‖2

2σ2
i

)
3 Concept for Combining Reinforcement-Learning

with an RBF Network
3.1 RBF Network for Approximating the Value

Function
A separate parameter vector ~θa,t is used for each action a. This vector
has the same number of components as the feature vector ~φs. The
approximated action-value function is defined as:

Qt(s, a) = ~θT
a,t

~φs =

n∑
i=1

θa,t(i)φs(i)

Figure 1 shows the RBF network that is used to approximate the
action-value function.

3.2 Gradient-Descent Sarsa(λ)
Figure 2 shows the gradient-descent Sarsa(λ) algorithm. The base al-
gorithm of [9] was modified so that radial basis functions are used as
features. Moreover it was adapted to the structure of the RBF net-
work of figure 1.

The algorithm terminates if the specified number of episodes has
been reached. An episode ends if the maximum number of steps has
been reached or the agent has found the specified goal. At a collision
of the robot with an obstacle the actual episode will be finished as
well because the robot is only allowed to move forward. The problem
is that the pivot point of the robot is located slightly in front so that a
rotation is not sufficient to rescue it from this situation.

In the base algorithm of [9] the set F contains the indices of the
features that represent the current state-action pair (s, a). In this work
the set Fs is only dependent on the current state s. The action a is
required once in the output layer of the RBF network. This approach
has the advantage that the number of features is independent of the
number of actions. Moreover the calculation effort can be reduced
this way if the Q-value for only one state-action pair is required,
which is the case when the agent chooses a random action.

s

φs(1)

φs(2)

φs(3)

φs(n)

Q(s, a1)

Q(s, a2)

Q(s, am)

∑

∑

∑...

...

~θa1

~θam

Figure 1. RBF network for the approximation of the action-value function.

01 Initialize ~θ abitrarily
02 Repeat (for each episode):
03 ~e = ~0
04 s, a← initial state and action of episode
05 Fs ← set of features present in s
06 Repeat (for each step of episode):
07 For all i ∈ Fs:
08 ~ea(i)← ~ea(i) + φs(i)
09 Take action a, observe reward, r,

and next state, s′

10 δ ← r −
∑

i∈Fs
θa(i)φs(i)

11 With probability 1− ε:
12 For all a ∈ A(s′):
13 Fs′ ← set of features

present in s′

14 Qa ←
∑

i∈Fs′
θa(i)φs′(i)

15 a′ ← arg maxa Qa

16 else
17 a′ ← a random action ∈ A(s)
18 Fs′ ← set of features present in s′

19 Qa′ ←
∑

i∈Fs′
θa′(i)φs′(i)

20 δ ← δ + γQa′

21 ~θ ← ~θ + αδ~e
22 ~e← γλ~e
23 s← s′

24 a← a′

25 until s is terminal

Figure 2. Linear, gradient-descent Sarsa(λ) with RBF-features and
ε-greedy policy.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

18

3.3 State Space

For perception of the environment the infrared sensors of the robot
are used. The state space is defined as ([10, 65]∪{−1})7. The inter-
val [10, 65] specifies the used measurement range of the infrared sen-
sors. The value−1 is used if the sensors does not detect any obstacle.
A state is composed of the measured values of seven infrared sen-
sors. There are three RBF features per dimension of the state space
so that the 7-dimensional state space has a total of 37 features. Figure
3 shows the distribution of the features for one sensor.

−1 10 65

Figure 3. Distribution of the radial basis functions for one infrared sensor.

Again, the sensor values are very noisy. At an ideal distance of 45
cm the sensors supply values between 35 cm and 70 cm [3]. More-
over there are sensor failures at which the obstacles will not be de-
tected at all. Figure 4 shows the simulated infrared sensors of the
robot.

b

b

b

b

b

b

bb b b

b

b

b

b

S1

S2S3

S4S5

S6S7

Figure 4. Simulated infrared sensors of the robot.

3.4 Action Set

The action set consists of three actions: turn right, move forward, and
turn left. An action is defined as a tuple (∆ϕ, ∆s) at which ∆ϕ de-
scribes an angle of rotation and ∆s a stroke for moving forward. It
is assumed that the absolute orientation and position of the robot are
unknown so that an action describes only the change of orientation
and position respectively. The forward and rotational velocity are as-
sumed as constant. For the reward model the actions are defined as:

a ∈

{ −1 turn right
0 move forward
1 turn left

4 Online Reward Model

The intention at the development of a reward model is to provide the
robot a specific behaviour in specific situations under the additional
condition that the number of episodes should be as low as possible.
A similar problem was treated in [4] (by our working group) with
evolutionary algorithms (EA) and was successfully used in reality.

In the following the similarities between the evolutionary ap-
proach and the reinforcement learning approach will be discussed.
Candidate solutions to the optimisation problem play the role of in-
dividuals in a population (for example in [2]) where an individual is
the artificial neural network that controls the robot. The fitness func-
tion determines the learning process of the individual. Individuals in
EA are with Qπ

app defined policies (here the RBF networks) that are
comparable with the RL approach. The fitness function of the indi-
viduals is almost comparable with the approximation of the value
function Qπ

app for policy π.
Because of this similarity the elementary reward of the devel-

oped reward model is based on the fitness function from [2]. That
fitness function favors the desired behaviour of the robot as well.
The fitness function is defined as F =

∑T

t=1
f(t), where f(t) =

v(t)exp(−100(H(t) −H(t − 1))2)smin(t) is the according value
at time t. v(t), H(t) and smin(t) are the speed, the heading of the
robot, and the minimal value of the sensor set readings respectively.
This fitness function favors controllers that move straight as long and
as fast as possible and controllers that navigate the robot with the
maximum distance from the obstacles.

Observations have shown that the penalty mechanism at the evo-
lutionary approach is built in but not easy to find. This is relevant, if
the individual stands still due to a collision and will not be rewarded
further. The population orientated method through several possible
solutions is leading quickly to the desired solution.

In the reward model that is used in this work the penalty mecha-
nism will be introduced artificially. The minimal sensor value of the
sensor set is defined as smin

t := minist(i). The penalty mechanism
will be activated if the minimal sensor value falls below a critical
threshold smin. The value smin depends on the design of the robot,
its balance point, and its dimensions. With the help of the adesired

value a kind of reflex will be introduced that acts rational. In case
the robot receives a message from the right side about a shortfall
of the minimal acceptable distance smin the rationality says: turn
right and move forward is not the correct decision so that it applies
to adesired

t = 1. The negative elementary reward will be computed
depending on (smin−smin

t) and the value |adesired
t −at|. The com-

plete reward model is defined as

rt(s
min
t , at, at−1) ={
−1 · (smin − smin

t)|a
desired
t −at|+1 : for negative reward

(smin
t − smin) · exp

(
− (at−at−1)2

2σ2

)
: for positive reward

where σ = 0.75. The elementary reward is hence dependent on
the current state st as well as the two last executed actions at and
at−1. It concerns a reflex that protects the agent’s life. It is important
to find a balance between rewards and penalties. The reward for goal
reaching should at least differ by a factor of 10.

5 Results and Discussion

There were several tests performed to determine the robustness and
the learning ability of the RBF network which controls the robot’s

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

19

drive system. The evaluations have shown that the used RBF net-
work has the ability to process the sensor data so that interferences
like sensor failures or noisy sensor values have no strong influences
on the learning process and the application of the method. It could
be shown that the simulated robot can navigate through the given
test track after few episodes (after one episode as well) without colli-
sions. The knowledge that was learned in the simulation was applied
in the real world without additional effort so that the robot was able
to navigate through the real test track without collisions as well.

5.1 Comparison between RBF and Coarse Coding

In the following the characteristics of the intelligent system such as
robustness and efficiency will be determined by applying of radial
basis functions and coarse coding.

The robustness and efficiency of the method will be considered in
the Map World. This is defined as an extension of the Grid World
[9] to a continuous state space which is represented by the position
and orientation of the robot. Feedback from the environment in Map
World is the robot’s position and orientation in the world coordinate
system. The start and goal positions are fixed. This environment was
chosen to better understand the learning process of the implemented
algorithm. The behaviour of the robot is statistically not easy to in-
terpret. In contrast, the number of steps to a fixed goal is always
ascertainable. Consequently, the statements about the robustness and
efficiency of the learning process can be derived easier. Moreover,
the required time to solve the task in the Map World is much less
compared to the measuring space. As a result the number of trials
and the significance of the results can be increased. It is assumed that
the characteristics of the method are portable to other state spaces as
well.

5.1.1 Test Method

To compare RBF and coarse coding the position and orientation of
the robot are used for perception of the environment so that the agent
optimises the path from the start position to the specified goal. The
agent receives a positive reward if it finds the goal. In the case of a
collision of the robot with an obstacle the agent gets a penalty (neg-
ative reward). In the other cases it receive a small penalty. Figure
5 shows the used simulated environment of the robot. The analysis
showed that the differences between RBF and coarse coding are sig-
nificant even in the case of a very easy test environment.

Figure 5. Start configuration of the test environment (environment 1). The
arrow describes the robot’s driving direction.

The learning rate α will be set to the value 0.2/|Fs| during the
learning process at which |Fs| describes the number of features that
represent the current state [9]. The discount factor γ and the decay
factor λ are both set to the value 0.8. The number of episodes is set
to the value 400 for environment 1 at which one episode consists of
maximal 200 steps. A total of 200 trials are performed for each test.

To understand the learning process an additional episode will be
passed between each second episode at which the learning rate and
the exploration rate are both set to the value 0. It will be described
hereafter as sample. A sample describes the number of steps that the
simulated robot needs from the start position to the given goal. After
the additional episode the learning process will be continued.

The following diagrams show the average values of the samples
from 200 trials at which the simulated robot has reached the goal.
To compute the number of samples that were used for the computa-
tion of a specific average value the probabilities for goal reaching are
shown in the diagrams as well.

5.1.2 Different Exploration Rates

In the following the convergence properties of the method using dif-
ferent exploration rates ε will be analysed.

At a sensor failure the current state will be described by another
subspace of the state space. This means that the agent can choose an
action that is possibly inapplicable in the present situation. At a large
measurement difference of a sensor the agent can choose a wrong
action as well because the current state will be possibly represented
by other features. Such behaviour of the agent is comparable with the
selection of random actions.

Figure 6 shows the results for ε = 0.05 using environment 1. The
method provides good results for both coarse coding and radial basis
functions. The optimal path was found after 130 episodes for both
types of features.

 0

 20

 40

 60

 80

 100

 120

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

Episodes

#
 S

te
p
s
 t
o
 g

o
a
l
(S

)

P
ro

b
a
b
ili

ty
 f
o
r

g
o
a
l
re

a
c
h
in

g
 (

P
)

RBF (S)
RBF (P)

Coarse Coding (S)
Coarse Coding (P)

Figure 6. Comparison between RBF and coarse coding using a small
exploration rate ε. Test configuration: α = 0.2/|Fs|, ε = 0.05, γ = 0.8,

λ = 0.8, σ = 7.

Figure 7 shows the results for ε = 0.6. It is noticeable that the
method is susceptible to interferences by using coarse coding while
it is stable and converges towards a specific value after 240 episodes
using radial basis functions. It is noticeable that the probability for
goal reaching by using coarse coding no longer achieves the value

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

20

1 but takes course highly unstable at smaller values. Moreover the
optimised path by using radial basis functions is a bit better than in
figure 6.

 0

 20

 40

 60

 80

 100

 120

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

Episodes

#
 S

te
p

s
 t

o
 g

o
a

l
(S

)

P
ro

b
a

b
ili

ty
 f

o
r

g
o

a
l
re

a
c
h

in
g

 (
P

)

RBF (S)
RBF (P)

Coarse Coding (S)
Coarse Coding (P)

Figure 7. Comparison between RBF and coarse coding using a high
exploration rate ε. Test configuration: α = 0.2/|Fs|, ε = 0.6, γ = 0.8,

λ = 0.8, σ = 7.

Binary features also have heavy effects if the current state is lo-
cated far away from the centre of a feature so that the computed lin-
ear combination contains components of the parameter vector that
are not important for the representation of the current state as well.
At small exploration rates state-action pairs already known by the
agent will be visited again and again so that the agent does not dif-
fer from its current strategy. At high exploration rates the agent vis-
its unknown state-action pairs time after time. It is believed that the
agent forgets its gathered knowledge if it reaches a state-action pair
at which it must discover the goal again. This effect will be enforced
as a result of long eligibility traces because the before attended state-
action pairs will be adapted over a longer period of time.

The described effect can not occur when using radial basis func-
tions because the components of the parameter vector are included
only scaled in the computation of the approximated action-value
function.

5.1.3 Different Dimensions of the Features

In the following several tests are performed to determine the robust-
ness of the method when using different dimensions of the features.
For this reason the width of the features will be modified i.e. sup-
port of Gaussian. It is assumed that the features are distributed in
the state space evenly so that each state can be described at least by
one feature. To analyse the results independently of the position and
dimension of the features the minimum and maximum number of
overlaps will be determined. The exploration rate will be set to the
value 0.2 to simulate a small interference.

Figure 8 shows the results for σ = 7. It can be noticed that the
method provides a good result for both coarse coding and radial basis
functions.

The results for σ = 11 are shown in figure 9. By using coarse
coding the same effect can be observed here as in figure 7.

By using coarse coding the difference QCC(s, a) − QRBF (s, a)
will increase with the growing number of overlaps because the com-

 0

 20

 40

 60

 80

 100

 120

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

Episodes

#
 S

te
p

s
 t

o
 g

o
a

l
(S

)

P
ro

b
a

b
ili

ty
 f

o
r

g
o

a
l
re

a
c
h

in
g

 (
P

)

RBF (S)
RBF (P)

Coarse Coding (S)
Coarse Coding (P)

Figure 8. Comparison between RBF and coarse coding using a small
number of feature overlaps. Test configuration: α = 0.2/|Fs|, ε = 0.2,

γ = 0.8, λ = 0.8, σ = 7.

 0

 20

 40

 60

 80

 100

 120

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

Episodes

#
 S

te
p

s
 t

o
 g

o
a

l
(S

)

P
ro

b
a

b
ili

ty
 f

o
r

g
o

a
l
re

a
c
h

in
g

 (
P

)

RBF (S)
RBF (P)

Coarse Coding (S)
Coarse Coding (P)

Figure 9. Comparison between RBF and coarse coding using a high
number of feature overlaps. Test configuration: α = 0.2/|Fs|, ε = 0.2,

γ = 0.8, λ = 0.8, σ = 11.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

21

puted linear combinations have more and more components of the
parameter vector that are not very important for the representation of
the current state. This means that the number of features is growing
in which the current state is located far from the centre.

By using RBF features the method converges towards a specific
value, but the number of required episodes is higher than in figure 8.
This is because the adaptation of the parameter vector requires more
time in conjunction with a growing number of overlaps, because the
sensibility of the computed linear combination is growing already at
small state changes. Therefore, a high number of overlaps has nega-
tive effects on the method.

The method provides good results if each possible state is repre-
sented at least by two features. The number of overlaps must conse-
quently not be that high in order to use this method efficiently and
robustly.

5.2 Learning of Behaviour in Online Mode

As stated before, the agent should learn to navigate the robot through
a given test track without collisions and in adequate time. In the first
instance the process pattern reality-simulation-reality was used. In
this case, the learning process took place in the simulation.

Several reward models have been tested in the simulation. The in-
telligent system uses an online reward model with which the agent
can improve his behaviour while it is navigating the robot through
the test track. The agent gathers its knowledge because of the states,
actions, and rewards that occur during the interaction with the envi-
ronment. There is a test track given at which the agent has to learn
the correct behaviour without previous knowledge.

Observations have shown that the robot was already able to navi-
gate through the test track after a few episodes. A collision can hap-
pen once in a while if several sensor failures or wrong sensor values
respectively occur in a row. To reduce the influences of interferences
the forward velocity of the robot can be decreased. Afterwards the
knowledge that was learned in the simulation was applied on the real
robot. In reality the robot could navigate through the test track as
well.

The learning rate α is set to the value 0.2 during the learning pro-
cess. The exploration rate ε is adjusted to the value 0.01 in order
that the agent shall generally use its gathered knowledge to navigate
the robot through the test track. The discount factor γ and the decay
factor λ are both set to the value 0.8.

In the second instance the complete learning process has been per-
formed in reality (see figure 10). The agent has to learn the correct be-
haviour without previous knowledge here. Observations have shown
that few episodes are needed in order that the agent can navigate the
robot through the test track without collisions. The learning process
in the reality has been recorded on video3.

The intelligent system has the ability of generalisation so that the
agent can learn its behaviour in a complex test track and use it in yet
unknown test tracks.

6 Conclusion

The developed method offers two advantages. It is stable and leads
quickly to the desired behaviour of the robot in reality. The used
approach is the Sarsa(λ) algorithm from the field of reinforcement
learning. Because of the short learning time and the adaptation ability
RBF-features have been used for approximation of the action-value

3 see http://www.uni-due.de/is/projekt emrobnav.php

Figure 10. The robot in the real world.

function. The RBF network creates a control signal from the mea-
sured sensor values so that the desired behaviour of the robot can be
determined. It was necessary to develop an online reward model. The
fitness function of evolutionary algorithms was applied as the base of
the online reward model. The adaptation ability of the RBF network
was confirmed by comparing it with coarse coding in the benchmark
environment Map World. For the complete method the virtual proto-
typing approach was used. Numerous trials have shown that the ap-
proach is fast, efficient, and adaptive on difficult real environments
as well.

REFERENCES
[1] D. Busquets, R. L. de Mo’ntaras, C. Sierra, and T. G. Dietterich, ‘Rein-

forcement learning for landmark-based robot navigation’, in First Inter-
national Joint Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS, pp. 841–843, Bologna, (2002).

[2] Y. Kassahun, Towards a Unified Approach to Learning and Adapta-
tion, Ph.D. dissertation, Christian-Albrechts-Universität, Institut für In-
formatik und Praktische Mathematik, Kiel, 2006.

[3] T. Köpsel, Evolutionäre Algorithmen zur Topologieentwicklung von
Neuronalen Netzen für die Roboter-Navigation im praktischen Einsatz,
Diploma Thesis, Lehrstuhl Intelligente Systeme, Universität Duisburg-
Essen, Duisburg, 2007.

[4] T. Köpsel, A. Noglik, and J. Pauli, ‘Evolutionäre Algorithmen
zur Topologieentwicklung von Neuronalen Netzen für die Roboter-
Navigation im praktischen Einsatz’, in Autonome Mobile Systeme 2007,
ed., T. Luksch K. Berns, Informatik aktuell, pp. 145–151, Berlin, (2007).
Springer-Verlag.

[5] J. Li and T. Duckett, ‘Robot behaviour learning with a dynamically adap-
tive rbf network: experiments in offline and online learning’, CIRAS
2003, Second International Conference on Computational Intelligence,
Robotics and Autonomous Systems, (2003).

[6] K. Maček, I. Petrović, and N. Perić, ‘A reinforcement learning approach
to obstacle avoidance of mobile robots’, in Proceedings of the 7th IEEE
International Workshop on Advanced Motion Control, pp. 462–466,
Maribor, (2002). IEEE.

[7] K. Samejima and T. Omori, ‘Adaptive internal state space construction
method for reinforcement learning of a real-world agent’, Neural Netw.,
12(7-8), 1143–1155, (1999).

[8] Richard Stansbury, Eric Akers, Hans Harmon, and Arvin Agah, ‘Sim-
ulation and testbeds of autonomous robots in harsh environments’, in
Software Engineering for Experimental Robotics, ed., Davide Brugali,
volume 30 of Springer Tracts in Advanced Robotics, Springer - Verlag,
Berlin / Heidelberg, (April 2007).

[9] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, Cambridge, Massachusetts, 1998.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

22

Using cooperative multi-agent Q-learning to achieve
action space decomposition within single robots

Sebastiaan Troost1 and Erik Schuitema2 and Pieter Jonker1,2

Abstract. Reinforcement Learning (RL) is a promising way of con-
trolling autonomous robotic systems. It is well known that RL does
not scale very well towards systems with many inputs and outputs,
like humanoid robots. Making RL more scalable towards more com-
plex systems has become one of the most important issues in this
research field. When considering a RL system with many outputs,
we not only face the problem of storing the action-value function for
all output combinations, we also need to evaluate all output com-
binations at every action selection, which quickly becomes compu-
tationally heavy. This paper tries to tackle the problems that come
with large action spaces by using a multi-agent approach in which
each output is controlled by an independent Q(λ)-learning agent. All
agents receive the same rewards, i.e., they work in a fully coopera-
tive setting. We test our approach on two simulated robotic systems,
each with two actuators; a two-link manipulator and a bipedal walk-
ing robot. Both systems show that the multi-agent approach with two
agents learns with a speed and system performance almost identical
to the single-agent approach, while the memory requirements and
action selection computation time is now linear in the number of ac-
tuators, instead of exponential. We also tested three modifications to
our approach: using SARSA, using synchronized exploration and us-
ing Lenient Learning. With the two-link manipulator, Lenient Learn-
ing significantly increased learning speed and performance, while the
other modifications didn’t have a significant effect in either of both
systems.

1 INTRODUCTION
Reinforcement Learning (RL) receives increasing attention as a way
of controlling autonomous systems, mostly because of its mild as-
sumptions on the learning problem and its capabilities to learn on-
line. However, it is well known that RL does not scale well towards
more complex systems, like humanoid robots, because of the large
number of inputs (sensors) and outputs (actuators) that are spanning
the continuous state-action space of these systems. The larger the
state-action space of a system, the longer it takes and the more mem-
ory it requires to find a control policy with RL. While the state-action
space as a whole has these two effects when getting larger, a large ac-
tion space possesses an additional computational disadvantage. Sup-
pose a robot has M motors, each of which can be controlled in N
discrete actuation steps. Selecting the best action in a certain state in-
volves evaluating NM different state-action values and this has to be

1 Delft University of Technology, Faculty of Applied Sciences, Dept. of
Imaging Science and Technology, Lorentzweg 1, NL-2628CJ, Delft, The
Netherlands

2 Delft University of Technology, Faculty of 3ME, Dept. of Biomechani-
cal Engineering, Mekelweg 2, NL-2628CD, Delft, The Netherlands, email:
E.Schuitema@tudelft.nl, P.P.Jonker@tudelft.nl

done at each time step. One way to overcome this large choice of ac-
tions is to work with parameterized policies for (groups of) actuators,
like in policy gradient approaches [8, 22, 16]. While this approach
significantly reduces the search space of the learning problem, it re-
quires prior knowledge on sensible policy functions. Although this
prior knowledge could be quite intuitive for certain robotic systems,
it is, in our opinion, a step away from fully autonomous robots us-
ing a generic learning framework and can rule out inventive solutions
that a programmer did not consider when defining the control policy
functions.

In this paper, we choose to decompose the action space by as-
signing a learning agent to each individual actuator and letting those
heterogeneous agents learn to achieve the overall system goals by
cooperating. Each agent’s state space consists of the full state space,
but does not include any information on the action selection on the
other actuators. In [4] this approach is called Independent Learners
(IL).

In the IL approach, the state transitions for each agent do not only
depend on the actions taken by that agent itself, but also on the ac-
tions of the other agents. Since these are not included in the agent’s
state-action space, the state transition function for each independent
agent is in effect time-varying. Only when all policies have become
static, for example when they all converged to the optimal ones, each
agent’s transition function is static and the problem for each agent
is again a Markov Decision Process (MDP) [21]. The single-agent
MDP is extended to a multi-agent MDP in [10, 2], however, no con-
vergence proofs are found under the same conditions as for RL on a
single-agent MDP [4]. By giving each agent the same reward for their
joint action, thus only when all agents do the right thing simultane-
ously, this approach might still lead to convergence to an (almost)
optimal solution of the whole system. When using this approach, in-
stead of evaluating the action-values of all possible action combina-
tions of the actuators, as in the single-agent case, each agent selects
its own action, without any form of negotiation. In our example of
M motors with N discrete actions, this will lead to evaluating and
storing M ·N values instead of NM ; an increase that is linear in the
number of actuators instead of exponential.

We tested this approach on two different simulations of robotic se-
tups: a two-link manipulator and a, more complicated, bipedal walk-
ing robot. Both setups have two motors that can be controlled to
generate a certain torque. In both tests, classical single-agent Q(λ)-
learning is compared with our multi-agent Q(λ)-learning approach.
We also tested three modifications to our approach: using SARSA
[21], an on policy learning algorithm, using synchronized explo-
ration, where all agents explore at the same time, and using Lenient
Learning [14], a method for multiple agents to be lenient to each
other’s actions. For the continuous state space, we use tile coding

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

23

[21] as a function approximator.
This paper is organized as follows. In Section 2, we explain the

theory on RL, multi-agent RL (MARL) and our proposed method.
In Section 3, we explain our first test setup consisting of a simulated
two-link manipulator with two actuators. In Section 4, we explain
our second test setup consisting of a simulated bipedal walking robot
with two actuators. We finally present a discussion in Section 5 and
our conclusions in Section 6.

2 THEORY

Reinforcement Learning (RL) is designed to find optimal control
policies for Markov Decision Processes (MDPs) [21]. If a prob-
lem can be formulated as an MDP for discrete state-action spaces,
two well-known temporal difference (TD) algorithms, Q-learning
[24, 21] and SARSA [19, 21], are proven to converge to the optimal
control policy for the MDP3. For our proposed approach, the MDP
framework needs to be extended to a multi-agent version in which
several learning entities are active in the same environment.

2.1 MMDP

A Markov Decision Process or MDP is defined as the 4-tuple:

〈S,A, T,R〉, (1)

where S and A are finite sets of the states and actions, where T :
S×A×S −→ [0, 1] is a transition function defining the probability
of transitioning to state st+1 ∈ S when executing action at ∈ A in
state st ∈ S, and where R : S × A → < is a real valued reward
function. An MDP has the Markov-property, which means that the
probability distribution function over the next states of the system
only depends on the current state-action pair.
In [10, 2] this single-agent MDP is extended to a multi-agent version.
This is done by including all agents in the tuple. We now define the
multi-agent MDP (MMDP) as the 5-tuple:

〈S,M, {A1, ..., An}, T,R〉, (2)

where M is a finite set of agents, Ai is the action space available to
agent i, T : S×A1× . . .×An×S −→ [0, 1] is a transition function
and R : S → < is a real valued reward function.

We propose to split this MMDP up by creating, for each agentM i,
a 4-tuple with a single action space Ai, the entire set of states S, a
time-varying transition function only dependent on the agent specific
actions Ai Ti,t : S × Ai × S → [0, 1] and the reward function R,
based on the joint action A = {A1, . . . , An}:

M i : 〈S,Ai, Ti,t, R〉. (3)

The transition functions Ti,t are not constant because the state St+1

the system arrives in after taking action ai ∈ Ai depends on the joint
action A. These 4-tuples, thus, do not possess the Markov-property
unless Ti,t are static distributions. This should happen when the poli-
cies of the agents become stationary, i.e., they converge.

3 The convergence of Q-learning and SARSA combined with a function ap-
proximator to handle continuous state spaces is still a topic under research
[23, 1, 6, 17].

2.2 MA Q(λ)-learning
Q-learning is an off-policy learning method, which means that the
optimal policy is learned while action selection during learning may
follow a different policy. With standard Q-learning, the total expected
sum of rewards of choosing action a in state s and following the
estimated optimal policy afterwards is estimated and stored as the Q-
value of (st ∈ S, at ∈ A). It is updated after the agent executed at
in st and observed the result:

Q(st, at)← Q(st, at) + αδ, (4)

where α ∈ [0, 1] is the learning rate. For δ in (4) the Q-learning
specific δQ is

δQ = rt+1 + γmax
a′
Q(st+1, a

′)−Q(st, at). (5)

where γ ∈ [0, 1] is the time discount factor. To increase convergence
speed, Q-learning can be combined with replacing eligibility traces
to form Q(λ)-learning [21]. This uses a trace to update all action
values (Q) previously visited in the current episode, at every time t.
Each visited location (s, a) in the action-value space is stored in this
trace. At time t, all values in the trace are updated with the use of an
intermediate function et(s, a):

et(s, a) =

{
1, s = st and a = at

γλet−1(s, a), otherwise
Qt+1(s, a) = Qt(s, a) + αet(s, a)δ.

(6)

et is initialized at 0 and set to 1 when s = st and a = at. After each
update, the factor et(s, a) is decayed by γλ, where λ ∈ [0, 1] is the
trace discount factor. When the action selection policy (see Section
2.4) chooses a different action at+1 than argmax

a′
Q(st+1, a

′), the

trace needs to be cleared because the state-action pairs in the trace
can no longer all be held responsible for the current state under the
optimal policy.

The update rule can be extended to a multi-agent Q(λ)-learning
update rule to try and solve the previously proposed MMDP. We pro-
pose to give each Independently Learning (IL) [4] agent i its own
multi-state action-value function Qi spanned by S × Ai that is up-
dated (note that general formal convergence guarantees are lost [4])
with a similar rule to (6):

Q1
t+1(s, a

1) = Q1
t (s, a

1) + αe1t (s, a
1)δ1,

Q2
t+1(s, a

2) = Q2
t (s, a

2) + αe2t (s, a
2)δ2,

...
Q1
t+1(s, a

n) = Q1
t (s, a

n) + αent (s, an)δn,

(7)

where eit(s, ai) is the agent i specific trace decay function:

eit(s, a
i) =

{
1, s = st and ai = ait

γλeit−1(s, a
i), otherwise

(8)

that for Q(λ)-learning is cleared when agent i performs an ex-
ploratory action, and δi is the agent specific δiQ of (5) for MA Q(λ)-
learning:

δiQ = rt+1 + γmax
a′i

Q(st+1, a
′i)−Q(st, a

i
t). (9)

2.3 MA SARSA(λ)-learning
SARSA is similar to Q-learning but is an on-policy algorithm. This
means, that SARSA will learn to predict the total expected sum of

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

24

rewards of choosing action a in state s and following the current
policy afterwards. The update rule (4) still applies however δS is now
used for δ:

δS = rt+1 + γQ(st+1, at+1)−Q(st, at), (10)

where at+1 is the action chosen by the action selection policy. Ex-
tending SARSA to SARSA(λ) is the same as for Q-learning, with
one exception: the trace does not need to be cleared when choos-
ing an action at+1 in the learning process that is not equal to
argmax

a′
Q(st+1, a

′).

We again propose to extend SARSA(λ) to the multi-agent ver-
sion MA SARSA(λ), which results in (7) with trace decay function
(8), which for SARSA is not cleared when agent i performs an ex-
ploratory action. For δi the SARSA specific δiS (10) is used:

δiS = rt+1 + γQ(st+1, a
i
t+1)−Q(st, a

i
t). (11)

2.4 Policy

Several action selection policies can be used during learning to incor-
porate different exploration strategies. We used the ε-greedy policy
with the exploration rate ε:

x = random([0, 1]),

at =

{
random(a ∈ A), x < ε
argmax

a′
Q(st, a

′). x ≥ ε
(12)

In the case of multi-agent Q(λ)-learning each agent i has its own
policy and thus independently decides which action ai to take:

xi = random([0, 1]),

ait =

{
random(ai ∈ Ai), xi < ε
argmax

a′i
Qi(st, a

′i). xi ≥ ε
(13)

One may choose to synchronize exploration between the agents by
always exploring simultaneously:

x = random([0, 1]),

ait =

{
random(ai ∈ Ai), x < ε
argmax

a′i
Qi(st, a

′i). x ≥ ε
(14)

2.5 Function approximation: tile coding

We use tile coding [21] as a function approximator for continuous
state-action spaces. With tile coding, first the state-action space is
discretized into a multidimensional grid, a tiling, by defining the grid
spacing, or tile width, in each dimension. Setting the resolution for
each dimension is done using intuition and trial-and-error. Addition-
ally, a number of such tilings are superimposed on this base tiling,
evenly distributed within one tile width, see Figure 1a. The Q-value
of a certain state-action pair is then approximated by averaging all
values of the tiles that the state-action pair falls into. Because of the
discretization of a continuous problem, the MDP at hand becomes a
stochastic MDP; see Figure 1b. From state s1 the same action can
result in different states (s2 and s3), because the starting point, while
within one discrete state, in the continuous world is slightly different.

a. b.

Figure 1. a. Illustration of tile coding for 3 tilings in 2 dimensions. The
value at the dot is being evaluated. The values of the three tiles at the dot are
averaged to produce the final function value. b. Illustration of taking action

a1 in state s1. This action can transfer the system to state s2 or s3.

2.6 Action space decomposition
To make Reinforcement Learning more scalable in the number of
actuators and more suitable for (humanoid) robots we propose to de-
compose the action space of the system. We do this by implementing
multiple agents, each using Q(λ)-learning and each having control
over one of the actuators. Its advantages can be easily pictured by
Table 1, where the action space is shown for two actuators A and B.

Table 1. Action space of a. single-agent Q-learning b. multi-agent
Q-learning

a. b.
a1 a2 . . . an

b1 x x x x
b2 x x x x

...
...

...
...

...
bm x x x x

a1 x
a2 x

...
...

an x

b1 x
b2 x

...
...

bm x

The single-agent case is shown in Table 1a. The action space is
A × B with ai ∈ A and bj ∈ B. With this space the learning agent
has n · m values to store and to search through when selecting the
action with the highest Q-value. In Table 1b, the action spaces of two
agents are shown, each belonging to one actuator,A for the first agent
and B for the second. The two action spaces together have (m+ n)
values. This means that memory requirements and computation time
during action selection are reduced by a factor of:

m · n
m+ n

(15)

If we set m = n, as we will do in the robotic systems in the next
sections, the gain is a factor 1

2
m. When extending this approach to

i actuators this gain increases to 1
i
mi−1. Adding actuators to this

MARL approach requires a linear increase in memory and compu-
tational time instead of an exponential increase. Therefore, Action
Decomposition makes MARL more scalable in the number of actua-
tors.

2.7 The state of the art
In Section 2.1 we explained that each Independent Learner has a non-
Markovian problem to solve. This is because each IL is not aware of
the actions of all other ILs. The system with all agents combined, the
MMDP, does possess the Markov-property.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

25

We propose to use these Independent Learners within one robot.
With action decomposition (see Section 2.6) an MDP is split up into
an MMDP, with one actuator per agent. Most recent literature that
involves MARL is about multiple, often homogeneous robots having
to work together to solve a problem. This leads to a system where it
is hard to have full state information of all robots; a problem we do
not have in single-robot systems. For example in [13], many coop-
erative multi-agent systems are described and good empirical results
are achieved.

Theoretical literature on heterogeneous ILs mainly focuses on sin-
gle state MMDPs with two or three actions available to each agent
[4, 9, 14, 15]. The problems faced and sometimes solved in these pa-
pers may also (at least to some extent) occur in our proposed method.
Because two or more agents have to work together in a stateless task,
in literature most problems are described in game theory terminol-
ogy. Because the learning problem for each agent is not stationary
(see Section 2.1) each agent is faced with a moving target learning
problem: the best policy depends on the other agents’ policies. This
problem is called the coordination problem [4]. In [4] the difficulties
of ILs are investigated and it is shown that there are two basic prob-
lems. They are summarized below for the deterministic MMDP and
the stochastic MMDP.

2.7.1 Deterministic MMDP

In the deterministic case, two situations give rise to problems. Since
the cross terms in the joint action space are not stored, problems arise
in situations like the ’penalty game’ and the ’climbing game’ [4].

Table 2. Reward function of a. Penalty Game b. Climbing game

a. b.
a1 a2 a3

b1 10 0 k
b2 0 0 0
b3 k 0 10

a1 a2 a3

b1 10 -30 0
b2 -30 7 6
b3 0 0 5

In the ’penalty game’, see Table 2a, k is a penalty. As can be seen
two Nash-Equilibria [12] exist at (a1, b1) and at (a3, b3). A Nash-
Equilibrium is an equilibrium in the joint action space A, such that
each agent’s individual action (in this case an and bn) is a best re-
sponse to the other’s [12]. The reward received when joint action
(a1, b1) is taken is the same as with (a3, b3). This means that if the
learning episode converged, the chances of choosing action a1 or a3

are both 50%. The same applies for b1 and b3, giving rise to a 25%
chance of choosing action (a3, b1) and a 25% chance of choosing
(a1, b3), leading to a penalty of k. To make sure the actions that re-
sult in a penalty are not chosen, and both agents prefer to choose the
same Nash-Equilibrium, some coordination might be needed.

In the climbing game (see Table 2b.) also two Nash-equilibria ex-
ist, an optimal one at (a1, b1) and a suboptimal one at (a2, b2). Be-
cause of the high penalties at (a1, b2) and (a2, b1) of -30 the ex-
pected reward for each agent if the other agent performs a random
action is 10−30

3
and negative. The same applies for (a2, b2), however

that equilibrium can be reached starting from (a3, b3) and moving up
to (a3, b2) and left to (a2, b2).

In [9] the IL is adjusted to cope with those problems. Instead of the
action value function update rule in (4) an ’optimistic’ assumption is
made:

Q(st, at)←
{
Q(st, at) + αδ, δ > 0

Q(st, at), δ ≤ 0
(16)

This takes care of the problem in the climbing game. In [9], they keep
track of the first best policy in each agent to make sure in the penalty
game both agents choose the same (the first tried) optimum. With
these two additions, convergence to the optimal solution is again
guaranteed under the same conditions as with the single-agent MDP
[9].

2.7.2 Stochastic MMDP; Lenient Learning

Within a stochastic MMDP, the fluctuations of the δ in a state-action
pair due to the stochastic transitions cannot be distinguished from
the fluctuations due to influence of the other agents’ actions. This
leads to an overestimation of the total expected reward when using
the ’optimistic’ assumption of (16) resulting in a loss of convergence.

In [14] Lenient Learning is proposed. This is a combination of the
update rule in Equation (4) and (16). In the beginning of the learning
trial the optimistic assumption is made to make sure optimal equi-
libria are found. After these are discovered, the lenience towards the
other agents is tuned down returning the update to the original func-
tion (4). This transition is smoothly made with a Boltzmann proba-
bility function:

x = random([0, 1]),

Q(st, at)←
{
Q(st, at) + αδ, δ > 0 or x > `

Q(st, at), δ ≤ 0 and x ≤ `
(17)

with x ∈ [0, 1] a random variable, and the state-action pair dependent
lenience `(st, at) defined as:

`(s, a) = 1− e−κ∗τ(s,a),
τ(s, a)← βτ(s, a),

(18)

where κ is the lenience parameter and τ(s, a) the lenience temper-
ature of the state-action pair (s, a), that decreases with a discount
factor β ∈ [0, 1], each time the state-action pair is visited. We have
extended Lenient Learning to a multi-state method with eligibility
traces and applied it as a first test to the two-link manipulator (see
Section 3).

2.8 Implications for our robots
Because convergence to the optimal solution is not guaranteed for
the ’penalty game’ and ’climbing game’ (see Table 1), care needs
to be taken when implementing ILs. In the test setups used in this
paper, we expect that these two situations, however, will not occur
very often in the joint action space.

With our policy (see Section 2.4) in combination with a random
action-value function initialization, one of the two (or more) equally
optimal Nash-equilibria of the penalty game will be chosen, at least at
first. When one of the optimal equilibria is chosen and a reward was
given for it, the action value function at that equilibrium is highest
for all agents. This means unless both agents explore simultaneously
and choose the other equilibrium, the action value function at the
first equilibrium will be highest. Even when both agents explore to
another optimal equilibrium, the action value function at the second
equilibrium, at least the first few times the agents explore there, will
be lower because of the learn rate, time and trace discounting factors
that apply on the update (see Equation (7)). Even if, after many ex-
plorations to a second optimal equilibrium, action value functions at
both equilibria are almost the same, they still will not be exactly the
same because of the random initialization. Thus, unless the agents
learn for a (almost) infinite time the two equilibria will not be valued
the same.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

26

If, in some states, a climbing-like game occurs, converging to the
more robust but suboptimal equilibrium ((a2, b2) in Table 1b.) [15]
instead of the the optimal one, does not necessarily effect perfor-
mance much. In most cases the robot will reach its goal slightly
slower than optimally. Because of the many (other) states that are
visited before completion of the task this affect will be small.

To help solve the possible convergence problems discussed in this
Section and in 2.7.2, Lenient Learning [14] is also implemented.

3 TWO-LINK MANIPULATOR
3.1 Model
The first test setup for our proposed method is a two-link manipulator
[3], depicted in Figure 2. The system has two rigid links, which are
connected by a motorized joint. One end of the system is attached
to the world, also with a motorized joint. The system moves in the
two dimensional horizontal plane without gravity according to the
following fourth-order non-linear dynamics:

M(α)α̈+ C(α, α̇)α̇ = τ (19)

in which α = [α1, α2] and τ = [τ1, τ2]. The mass matrix M(α) and
the Coriolis and centrifugal forces matrixC(α, α̇) have the following
form:

M(α) =

[
P1 + P2 + 2P3 cosα2 P2 + P3 cosα2

P2 + P3 cosα2 P2

]
(20)

C(α, α̇) =

[
b1 − P3α̇2 sinα2 −P3(α̇1 + α̇2) sinα2

P3α̇1 sinα2 b2

]
(21)

m
1

m
2

l
2

l
1

motor
1

motor
2

α
1

α
2

Figure 2. Two-link manipulator

Table 3. Physical parameters of the two-link manipulator

Symbols and values Description
l1 = l2 = 0.4 m link lengths
m1 = 1.25 kg,m2 = 0.8 kg link masses
I1 = 0.066 kgm2, I2 = 0.043 kgm2 link inertias
c1 = c2 = 0.2 m center of mass for the links
b1 = 0.08 kg/s, b2 = 0.02 kg/s damping in the joints
τ1,max = 1.5 Nm, τ2,max = 1.0 Nm maximum motor torques
α̇1,max = α̇2,max = 2π rad/s maximum angular velocities

Using the physical parameters from Table 3, we can calculate the
parameters P1, P2 and P3 in (20) and (21):

P1 = m1c
2
1 +m2l

2
1 + I1

P2 = m2c
2
2 + I2

P3 = m2l1c2

(22)

Equation (19) is numerically integrated using the Runge-Kutta al-
gorithm with time step Ti = 0.01s.

3.2 Learning
In our learning setup, we define two agents, one for each motor. Both
agents get full state information, but no information about the other
agent’s action:

Agent 1: S1 = α1 × α2 × α̇1 × α̇2, A1 = τ1
Agent 2: S2 = α1 × α2 × α̇1 × α̇2, A2 = τ2

(23)

The task of the system is to accomplish α1 = α2 = α̇1 = α̇2 = 0
as fast as possible. To this end, a reward is given when the angles
and angular velocities are within a small region around 0: |α| <
0.17 and |α̇| < 0.2. Both agents have to perform the right actions to
trigger this reward and both agents will receive the same reward in
that case. Furthermore, each time step a time penalty is given. The
reward function r for performing action at at time t, equal for both
agents, becomes:

r1t = r2t =

{
100, if |αt| < 0.17 and |α̇t| < 0.2
−1, all other cases (time penalty)

(24)

The agents perform a Q-learning update rule simultaneously at
each time step according to (7). The time between each learning step
Ts = 0.05s. The learn rate α = 0.4, the exploration rate ε = 0.05,
the discount factor γ = 0.98 and the trace discount factor λ = 0.92.
Both agents have their own tile coding function approximator with
16 tilings to approximate the Q-function. The action space is dis-
crete; for every Qi(s, ai) there is a separate function approximator
so that there is no generalization between actions. The tile widths for
the state space are 1/12 (rad) in the α1 and α2 dimensions and 1/6
(rad)s−1 in the α̇1 and α̇2 dimensions. The learning results will be
compared with the single-agent case in which one agent has the full
action space A = τ1 × τ2.

3.3 Results
In order to test the learning performance of the two-link manipula-
tor task, we defined a test set of 15 different initial conditions from
which the manipulator has to complete its task. We regularly let the
system perform the tasks from the test set and monitor the number
of successfully completed tasks. During test runs, exploration is dis-
abled. In the next sections, we test various learning algorithms and
settings and compare their performance. The learning process is re-
peated for several different random initializations of the action-value
function. In each result plot, the results are surrounded by 95% con-
fidence interval graphs or error bars.

3.3.1 Single-agent vs. multi-agent Q(λ)-learning

In this test we compare the learning result of the two-link manip-
ulator task in the single-agent case (SA) with the multi-agent case
(MA), where all agents use Q(λ)-learning. Each actuator’s action
space is discretized into 7 steps. The result can be found in Figure
3. The learning curve of the SA case is slightly, but barely better than
the MA case. This suggests learning behavior between a single-agent
and our multi-agent algorithm is comparable.

A comparison of the difference in memory usage between the SA
case and the MA case, for several sizes of the action space, can be
found in Figure 4. Because we use an equal number of discrete ac-
tions m for both agents, according to (15) we can expect a mem-
ory reduction of m

2
in the multi-agent case compared to the single-

agent case. As can be seen from the figure, the simulations follow the
expected memory reduction factor. A comparison of the calculation

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

27

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Simulated time (hours)

N
um

. b
al

an
ce

 s
uc

es
se

s

SA Q−learning
MA Q−learning

Figure 3. Single-agent (SA) Q(λ)-learning compared with multi-agent
(MA) Q(λ)-learning for the two-link manipulator task (average over 400

independent runs).

time of an average learn step can be found in Table 4. It follows the
same trend as for the memory reduction, with a bias for the overhead
of other calculations than the best action search.

4 6 8 10 12 14 16

2

3

4

5

6

7

8

9

10

of discrete actions

M
E

M
(

S
A

 Q
−

le
ar

n.
)

)
 /

M
E

M
(

M
A

 Q
−

le
ar

n.
)

)

Rel. memory use
x*x/(x+x)=x/2

Figure 4. Memory usage comparison between the single-agent (SA)
Q(λ)-learning setup and the multi-agent (MA) Q(λ)-learning setup for the
two-link manipulator task, for several sizes of the action space (equal for

both agents) (average over 25 independent runs).

Table 4. Single-agent (SA) vs. multi-agent (MA) Q(λ)-learning: relative
calculation time of the learning step for the two-link modulator with m

actions for each agent.
Two-link man. m = 5 m = 7 m = 15
SA/MA 2.1 3.2 7.1

3.3.2 SARSA(λ)-learning

It could be that choosing SARSA for each agent makes the agent
better able to deal with the changing policy of the other agent. A
comparison between the single-agent and the multi-agent case, both

using SARSA(λ)-learning, can be found in Figure 5. With SARSA
the SA case is just like with Q(λ)-learning a little better than the MA
case. Furthermore, the effect of using SARSA instead of Q-learning
in the MA case can be seen in Figure 6. There is no significant dif-
ference between SARSA and Q-learning.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Simulated time (hours)

N
um

. b
al

an
ce

 s
uc

es
se

s

SA SARSA−learning
MA SARSA−learning

Figure 5. Single-agent (SA) SARSA(λ)-learning compared with
multi-agent (MA) SARSA(λ)-learning for the two-link manipulator task

(average over 400 independent runs).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Simulated time (hours)

N
um

. b
al

an
ce

 s
uc

es
se

s

MA Q−learning
MA SARSA−learning

Figure 6. Multi-agent (MA) Q(λ)-learning compared with multi-agent
(MA) SARSA(λ)-learning for the two-link manipulator task (average over

400 independent runs).

3.3.3 Synchronizing explorative actions

In the Independent Learner MA setup, all agents explore indepen-
dently (13). However, it could be beneficial to synchronize explo-
ration by letting both agents solely perform explorative actions si-
multaneously (14). Perhaps the chances of escaping from a local
maximum (for instance in situation like the ’climbing game’ in Ta-
ble 1b.) increase when all agents deviate from their current policy
simultaneously. We compared the independent exploration strategy
with the synchronized exploration strategy. The result can be found

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

28

in Figure 7. It however, did not result in significantly better results.
This could be because in our state-action value function there are not
many non-optimal (Nash-)equilibria.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Simulated time (hours)

N
um

. b
al

an
ce

 s
uc

es
se

s

MA Q−learning indep.
MA Q−learning sync.

Figure 7. Multi-agent (MA) Q(λ)-learning with independent exploration
vs synchronized exploration between the agents (average over 400

independent runs).

3.3.4 Lenient learning

As explained in Section 2.7, Lenient Learning might help the learn-
ing process by ignoring negative value updates in the beginning of
learning. This would prevent one mistake of an agent to discourage
the right policy of the other agent. A comparison between multi-
agent Q(λ)-learning and multi-agent Lenient Q(λ)-Learning, with a
lenience factor `(s, a) for each state-action pair, with κ = 2.0 and
a temperature discount factor β = 0.95, discounting at each visit,
can be found in Figure 8. As can be seen a significant improvement
is achieved. Tweaking of the lenience parameters could potentially
increase this improvement even further. This subject deserves further
attention in our future research.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Simulated time (hours)

N
um

. b
al

an
ce

 s
uc

es
se

s

MA Q−learning
MA Q−learning Lenient(s,a,t)

Figure 8. Multi-agent (MA) Q(λ)-learning compared with multi-agent
(MA) Q(λ)-learning with Lenience for the two-link manipulator task

(average over 400 independent runs).

4 META: A BIPEDAL WALKING ROBOT
4.1 Model
Our second test setup is the simulation of a bipedal walking robot,
based on the prototype META [18], see Figure 9. META’s construc-
tion is based on the concept of limit cycle walking [7]. With the con-
cept of limit cycle walking, it is possible to construct a fully passive
walking robot that can walk down a shallow slope (for energy input)
without any actuation or control [5, 11], by carefully choosing the
mass distributions and leg lengths. By adding actuation, the robust-
ness increases and the energy input can come from an external source
so that it can walk on flat terrain. Because META was designed ac-
cording to the limit cycle walking concept, walking is a natural move-
ment for the robot. META is effectively a 2D walking robot by using
two pairs of parallel legs, which remove the sideways stability prob-
lem. The version of META that was modeled in [18] had one hip mo-
tor and a special mechanical construction that always kept the upper
body upright, at an angle that bisects the angle between both upper
legs. The prototype has recently been modified and now has two hip
motors. One motor controls the joint between the upper body and
the left upper leg, the other motor controls the joint between the up-
per body and the right upper leg. Each motor can apply a torque to
its joint between −10Nm and +10Nm. The prototype was modeled

Figure 9. The bipedal walking robot META.

in the Open Dynamics Engine rigid body simulator [20] as a 7-link
2D model, see Figure 10. The joints are modeled by stiff spring-
damper combinations. The knees are provided with a hyperextension
stop and a locking mechanism which is released just after the start of
the swing phase (i.e. right after making a footstep). Contact between
the foot and the ground is also modeled by a tuned spring-damper
combination which is active whenever part of the foot is below the
ground. The model of the foot mainly consists of two cylinders at the
back and the front of the foot. A set of physically realistic parameter
values were derived from the prototype, see Table 5.

4.2 Learning
The full state space of the robot consists of the angle and angular
velocity of all seven body parts, i.e. 14 state dimensions. Because
the feet have relatively small masses and inertias, we assume that the

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

29

Figure 10. Two-dimensional 7-link model of META. Left the parameter
definition, right the Degrees of Freedom (DoFs). Only the DoFs of the swing

leg are given, which are identical to the DoFs of the other leg.

Table 5. Physical parameters of the model of META.

Body(b) Up.leg(u) Lo.leg(`) Foot(f)
Mass m [kg] 8 0.7 0.7 0.1
Mom. of in. I [kgm2] 0.11 0.005 0.005 0.0001
Length l [m] 0.45 0.3 0.3 0.06
Vert. offset CoM c [m] 0.2 0.15 0.15 0
Hor. offset CoM w [m] 0.02 0 0 0.015
Foot radius fr [m] - - - 0.02
Foot hor. offset fh [m] - - - 0.015

state transitions and the rewards of the system do not significantly
depend on the angles and angular velocities of the feet. Therefore,
we do not include them in the state space, which leaves us with 10
input dimensions. We assign a separate learning agent to each motor,
so that we have a multi-agent system with two agents. Each agent
has the same state space consisting of these 10 input dimensions and
an action space consisting of one motor torque, discretized in 7 steps
between -10Nm and +10Nm.

The task of META is to learn to walk with the highest possible for-
ward velocity by actuating both hip motors. This requires the simul-
taneous coordination of the legs to make correct footsteps, as well as
the coordination of the upper body; a task that is much more difficult
than the learning task solved in [18]. The following rewards are used.
Whenever the robot makes a footstep, a reward is given that is pro-
portional to the length of the footstep. Together with a time discount
factor γ close to 1, the robot will optimize for progressing as many
meters in as little time as possible (however too large footsteps will
lead to falling). A footstep is defined as the moment when the foot
of the swing leg touches the ground while the hip angle is between
0.1 and 0.61 rad. These values are the minimum and maximum size
of a step that allow walking in our model. Furthermore, a penalty is
given when the robot falls. The rewards are based on the performance
of the system as a whole, not on the behavior of a single-agent. To
make a footstep, cooperation between both agents is required. Both
agents have the same reward function rt:

r1t = r2t =

{
500/m, if footstep made, 0.1 < |ϕhip,t| < 0.61
−10, if the robot falls

(25)

The agents perform a Q-learning update rule simultaneously at
each time step according to (7). The time between each learning step
Ts = 0.018s. The learn rate α = 0.5, the explore rate ε = 0.05,
the time discount factor γ = 0.995 and the trace discount factor
λ = 0.92. Both agents have their own tile coding function approx-
imator with 16 tilings. Generalization is present between states as
well as between actions. The tile widths are the same for all agents;
for the upper leg angles: 1/6 rad, the upper leg angular velocities: 1/2
rad·s−1, the lower leg angles: 1/2.1 rad, the lower leg angular ve-
locities: 1/1.65 rad·s−1, the body angle: 1/5.5 rad, the body angular
velocity: 1/1.2 rad·s−1 and the output torque: 5 Nm.

The learning results will be compared with the single-agent case
in which one agent has the full action space A = τ1 × τ2.

4.3 Results
In order to test the learning performance of META’s walking task, we
regularly perform a walking run and monitor the number of footsteps
the robot made. When 16 footsteps are made, we assume that walking
has succeeded and we end the trial. Therefore, the maximum perfor-
mance of a test run is 16 footsteps. During test runs, exploration is
disabled. In the next sections, we test various learning algorithms and
settings and compare their performance. The learning process is re-
peated for several different random initializations of the action-value
space. In each result plot, the results are surrounded by 95% confi-
dence interval graphs. In contradiction to the two-link manipulator of
Section 3, for Meta, Lenient Learning has not yet been successfully
applied. This will be done in future research.

4.3.1 Single-agent vs. multi-agent Q(λ)-learning

In this test we compare the learning result of META’s walking task in
the single-agent case (SA) with the multi-agent case (MA), where all
agents use Q(λ)-learning. The result can be found in Figure 11. First
of all, we can conclude that the walking task is successfully learned
in both the single-agent Q(λ)-learning and multi-agent Q(λ)-learning
case. The robot is able to walk after about 15 hours. Second, we can
conclude that the difference in learning speed between the SA case
and the MA case is negligible. However, in the end, the performance
in the multi-agent case is slightly less than in the single-agent case.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulated time (hours)

N
um

be
r

of
 s

te
ps

SA Q−learning
MA Q−learning

Figure 11. Single-agent (SA) Q(λ)-learning compared with multi-agent
(MA) Q(λ)-learning for META (average over 96 independent runs).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

30

4.3.2 Multi-agent SARSA(λ)-learning vs Q(λ)-learning

Because SARSA is an on-policy learning algorithm, it could be the
case that when the agents learn with SARSA, each agent is better able
to deal with the changing policy of the other agent. A comparison
between the MA case using SARSA(λ)-learning and the MA case
using Q(λ)-learning can be found in Figure 12. The learning curves
do not differ significantly and the SARSA algorithm has no added
value in this case.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulated time (hours)

N
um

be
r

of
 s

te
ps

MA Q−learning
MA SARSA−learning

Figure 12. Multi-agent (MA) Q(λ)-learning compared with multi-agent
(MA) SARSA(λ)-learning for META (average over 96 independent runs).

4.3.3 Synchronizing explorative actions

In the Independent Learner MA setup, all agents explore indepen-
dently (13). However, it could be beneficial to synchronize explo-
ration by letting both agents solely perform explorative actions si-
multaneously (14). Perhaps the chances of escaping from a local
maximum as in the ’climbing game’ of Section 3 increase, when
all agents deviate from their current policy simultaneously. We com-
pared the independent exploration strategy with the synchronized ex-
ploration strategy. The result can be found in Figure 13. The learning
graphs do not differ significantly. In this case, synchronization of ex-
plorative actions does not increase learning speed or performance.

4.3.4 Reduced state spaces

Now that we have created a multi-agent setting in which each agent
controls one actuator, it might be the case that each agent does not
need to know the full state of the robot in order to control its own
actuator. Note that we then violate the Markov property not only be-
cause all agent specific transition functions are time-dependent (see
Equation (3)), but also because we have hidden state variables. In this
test, the agent that controls the joint between the upper body and the
stance leg does not include the angular velocity of the lower swing
leg in its state space. The agent that controls the joint between the up-
per body and the upper swing leg still uses the full state space of 10
dimensions. The result can be found in Figure 14. From this graph,
it is clear that the performance of the reduced state space case is far
less than the original MA case, but not failing completely. It is clear

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulated time (hours)

N
um

be
r

of
 s

te
ps

MA Q−learning indep.
MA Q−learning sync.

Figure 13. Multi-agent (MA) Q(λ)-learning with independent exploration
vs synchronized exploration between the agents (average over 96

independent runs).

that divergence issues occur later on in the graph. Apparently, the
incomplete state space is violating the Markov property too much.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Simulated time (hours)

N
um

be
r

of
 s

te
ps

MA Q−learning
MA Q−learning imcompl. SS

Figure 14. Multi-agent (MA) Q(λ)-learning. The original MA setting is
compared with a MA setting in which one agent has an incomplete state

space (average over 96 independent runs).

5 DISCUSSION
In this paper, we used a multi-agent approach to make reinforcement
learning more scalable for learning complicated robotic tasks. When
adding actuators to a learning agent, its action space increases expo-
nentially, requiring a longer learning time, more storage space and
more computational search time during action selection. Decompos-
ing the combined action space of these actuators by splitting it up
over different agents solves the last two problems: instead of expo-
nentially increasing in size of the action space, it now becomes linear
in the number of actuators. Unfortunately our approach is not proven
to converge to the optimal solution. Current theory on convergence,
focusing on single state problems, shows two obstacles for conver-
gence: two typical situations called the penalty game and the climb-

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

31

ing game. We showed however that in our simulations these problems
didn’t result in bad performance.

We implemented the Independent Learner algorithms proposed for
two simulated robots: a two-link manipulator and Meta, a bipedal
walking robot. The two-link manipulator had to learn to get its two
links in a stable position with angles of both links at 0. Meta had to
learn to walk and to stabilize its upper body. Both systems have two
actuators and thus two agents in the multi-agent approach. In a direct
comparison between single-agent and multi-agent Q-learning, the
performance of cooperative, heterogeneous independently learning
agents was not very different from the single-agent case, while mem-
ory requirements and action selection computation time decreased
with a factor m·n

m+n
, in which m and n are the number of discrete

actions per actuator.
With single-agent learning, SARSA and Q-learning performed

equally well in both the two-link manipulator and Meta. Because
SARSA has an on-policy update rule, it might perform better than
Q-learning with multi-agent learning. SARSA learning was imple-
mented in both robots and resulted, however, in similar learning per-
formance to Q-learning.

We proposed an idea to quickly get out of local, suboptimal
(Nash)equilibria; to make sure both agents in each test setup do
an ε-greedy exploration simultaneously. However, this did not re-
sult in significantly different results. This could be because in
our state-action value function there are not many non-optimal
(Nash)equilibria.

In recent literature the Lenient Learning algorithm was proposed
as a method to quickly overcome the problems with unpredictable
and suboptimal other players. IL was implemented for the two-link
manipulator and a significant improvement was found in learning
speed and performance. Tweaking of the lenience parameters could
potentially further increase this improvement. For Meta, good results
with Lenient Learning have not yet been achieved. This subject de-
serves further attention in our research.

6 CONCLUSIONS

In this paper we showed that using multiple cooperative, heteroge-
neous independently learning agents, each controlling one actuator
of a robot, is a promising method of making reinforcement learn-
ing more scalable in the number of outputs and a better candidate
for learning in complex robots. The learning performance is similar
to the single-agent case, however, the computational time needed to
complete learning and the amount of memory needed to store the
state-action space are significantly decreased; from an exponential
problem in the number of actuators, it became a linear problem. In
addition, we showed that Lenient Learning significantly increased
learning speed in one of our test setups. Overall, this makes our
proposed method better than single-agent learning, at least for the
two double-actuator robotic systems that were tested. The method is
also very suitable for implementation on a multi-processor or multi-
computer system. Future work will concentrate on testing the method
on robotic systems with more actuators. Also, in the near future we
will test this approach on a real robot with multiple actuators.

REFERENCES

[1] L.C. Baird, ‘Residual algorithms: Reinforcement learning with function
approximation’, Proceedings of the Twelfth International Conference
on Machine Learning, 30–37, (1995).

[2] C. Boutilier, ‘Planning, learning and coordination in multiagent deci-
sion processes’, Proceedings of the 6th conference on Theoretical as-
pects of rationality and knowledge, 195–210, (1996).

[3] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, ‘Fuzzy Approx-
imation for Convergent Model-Based Reinforcement Learning’, Fuzzy
Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International, 1–6,
(2007).

[4] C. Claus and C. Boutilier, ‘The dynamics of reinforcement learning in
cooperative multiagent systems’, Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 746, 752, (1998).

[5] SH Collins, M. Wisse, and A. Ruina, ‘A two legged kneed passive dy-
namic walking robot’, Int. J. of Robotics Research, 20(7), 607–615,
(2001).

[6] G.J. Gordon, ‘Reinforcement learning with function approximation
converges to a region’, Advances in Neural Information Processing Sys-
tems, 13, 1040–1046, (2001).

[7] D.G.E. Hobbelen, Limit cycle walking, Delft University of Technology,
2008.

[8] N. Kohl and P. Stone, ‘Policy gradient reinforcement learning for fast
quadrupedal locomotion’, Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference on, 3.

[9] M. Lauer and M.A. Riedmiller, ‘An Algorithm for Distributed Rein-
forcement Learning in Cooperative Multi-Agent Systems’, Proceedings
of the Seventeenth International Conference on Machine Learning table
of contents, 535–542, (2000).

[10] M.L. Littman, ‘Markov games as a framework for multi-agent rein-
forcement learning’, Proceedings of the Eleventh International Confer-
ence on Machine Learning, 157163, (1994).

[11] T. McGeer, ‘Passive Dynamic Walking’, The International Journal of
Robotics Research, 9(2), 62, (1990).

[12] J.F. Nash Jr, ‘Non-Cooperative Games’, Annals of Mathematics, 54(2),
(1951).

[13] L. Panait and S. Luke, ‘Cooperative Multi-Agent Learning: The State
of the Art’, Autonomous Agents and Multi-Agent Systems, 11(3), 387–
434, (2005).

[14] L. Panait, K. Sullivan, and S. Luke, ‘Lenience towards Teammates
Helps in Cooperative Multiagent Learning’, Proceedings of the Fifth
International Joint Conference on Autonomous Agents and Multi Agent
Systems–AAMAS-2006, ACM Press, New York, (2006).

[15] Liviu Panait, Karl Tuyls, and Sean Luke, ‘Theoretical advantages of
lenient learners: An evolutionary game theoretic perspective’, Journal
of Machine Learning Research, 9(Mar), 423–457, (2008).

[16] J. Peters, S. Vijayakumar, and S. Schaal, ‘Reinforcement learning for
humanoid robotics’, Proceedings of the Third IEEE-RAS International
Conference on Humanoid Robots, (2003).

[17] D. Precup, R.S. Sutton, and S. Dasgupta, ‘Off-policy temporal-
difference learning with function approximation’, Proceedings of the
Eighteenth International Conference on Machine Learning, 417–424,
(2001).

[18] E. Schuitema, DGE Hobbelen, PP Jonker, M. Wisse, and JGD Karssen,
‘Using a controller based on reinforcement learning for a passive dy-
namic walking robot’, Humanoid Robots, 2005 5th IEEE-RAS Interna-
tional Conference on, 232–237, (2005).

[19] S.P. Singh and R.S. Sutton, ‘Reinforcement learning with replacing el-
igibility traces’, Machine Learning, 22(1), 123–158, (1996).

[20] R. Smith et al., ‘Open Dynamics Engine’, Computer Software. From
http://www.ode.org, (2006).

[21] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 1998.

[22] R. Tedrake, TW Zhang, and HS Seung, ‘Stochastic policy gradient re-
inforcement learning on a simple 3D biped’, Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, 3.

[23] JN Tsitsiklis and B. Van Roy, ‘An analysis of temporal-difference learn-
ing with functionapproximation’, Automatic Control, IEEE Transac-
tions on, 42(5), 674–690, (1997).

[24] C.J.C.H. Watkins, Learning from Delayed Rewards, Cambridge Uni-
versity, 1989.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

32

A Reinforcement Learning Approach for Production
Control in Manufacturing Systems

A.S. Xanthopoulos, D.E Koulouriotis1 and A. Gasteratos

Democritus University of Thrace, Hellas, email1: jimk@pme.duth.gr

Abstract. The problem of production control in serial
manufacturing lines that consist of a number of unreliable
machines linked with intermediate buffers is addressed. We
make use of Reinforcement Learning methodologies in order to
derive efficient control policies. Our aim is to derive control
policies that are more state-dependent and therefore more
efficient than well-known pull type control policies such as
Kanban. Manufacturing systems of this type are studied under
average measures such as average WorkInProcess inventories
etc. and thus, a learning algorithm from the currently
developing field of Average Reward Reinforcement Learning
was applied. The Reinforcement Learning control policy was
compared to three existing efficient pull type control policies,
namely Kanban, Base Stock and CONWIP on the basis of
simulated data and found to outperform them. The simulation
experiments involved a single-product system with two
machines that allows backordering. Numerical results are
presented along with a qualitative interpretation of our
findings. The paper concludes with directions for future
research.

1. INTRODUCTION

The manufacturing process of a plethora of industrial end products
is structured as a series of operations such as machining, forming
etc. that sequentially take place on raw parts and sub-assemblies in
order to form the finished product. The various manufacturing
stations of the system that can be single machines, manufacturing
cells etc. have non-deterministic production times and are
susceptible to failure. The unreliability of the manufacturing
operations along with the stochastic demand for final products
dictates the use of safety buffers of intermediate and finished parts
in order to attain the target service rate. However the use of safety
stocks incurs significant holding costs that could bring the
manufacturer to a position of competitive disadvantage and this is
why a lot of effort has been put on the implementation of efficient
methods for coordinating the manufacturing process.
 A time-honored approach to modeling serial manufacturing lines
is to treat them as Markov Processes (Gershwin, 1994, Veatch and
Wein, 1992). The sequential decision-making task of coordinating
production control can then be formulated as a Markov Decision
Problem (see Puterman, 1994 and Littman et al, 1995). The solution
to a Markov Decision Problem, (MDP), is a mapping from states to
actions which is called optimal policy, that determines state
transitions to maximize/minimize a properly defined performance
criterion. There are well-known iterative algorithms for solving
MDPs such as policy iteration (Howard, 1960), value iteration
(Bellman, 1957) and variations of the two above mentioned
techniques (asynchronous dynamic programming algorithms in

Bertsekas, 1987). However the classic dynamic programming
approach entails two major drawbacks: Bellman’s famous curse of
dimensionality and the need for a complete mathematical model of
the underlying problem. The term dimensionality curse refers to the
exponential computational explosion that takes place with the
increase of the system state space rendering a wide range of
realistic problems intractable by dynamic programming, (DP),
algorithms. Another serious limitation posed by DP techniques is
that they require transition probability and reward information in
order to be employed in a certain problem. The later severely
complicates the task of system modeling while in the same time
rules out real-world problems where a complete model is simply not
available.
 Due to the above mentioned limitations, researchers have focused
their efforts at developing sub-optimal yet efficient production
control policies. A class of well-studied control mechanisms known
as pull type control policies/mechanisms has come to be widely
recognized as capable of achieving quite satisfactory results in
serial manufacturing line management. These policies are the result
of the emergence of the JustInTime/lean manufacturing philosophy
and their main representative is the Kanban control policy that was
originally developed by the Toyota Motor industry and became the
topic of considerable research thereafter, (Sugimori et al, 1977,
Buzacott and Shanthikumar, 1993, Berkley, 1992, Karaesmen and
Dallery, 2000). Two other important and also well-studied pull
control policies are the Base Stock (Buzacott and Shanthikumar,
1993) and the CONWIP (Spearman et al, 1990) control policies.
 Pull type manufacturing control mechanisms as efficient as they
can be, still remain sub-optimal heuristics with a number of serious
inherent weaknesses, (e.g. the Kanban policy has limited flexibility
when it comes to rapid reaction to incoming demands, the
WorkInProcess inventory is unbounded in a Base Stock system),
and require a lot of fine-tuning in order to perform well. Another
important shortcoming is that pull control mechanisms do not take
into consideration the operational status of the system’s machines,
that is whether a machine is in working condition or has failed and
is currently under repair.
 The writers’ motivation was to utilize artificial intelligence
methodologies in order to derive automatically dynamic, more
state-dependent, near-optimal policies that would outperform the
existing pull type policies. In our attempt to do so, we use a method
from the field of Reinforcement Learning (Sutton and Barto, 1998,
Kaelbling et al 1996). Related work can be found in Paternina-
Arboleda and Das (2001) and Mahadevan and Theocharous (1998)
but their learning algorithm is different than the one used here.
Reinforcement Learning, (RL), can be viewed as a collection of
techniques and learning algorithms for teaching agents optimal
policies through interaction with their environment which is usually
simulated by a computer program. Reinforcement Learning has
received a lot of attention over the last few years as it provides the

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

33

means for solving many challenging problems, previously
considered to be intractable. In this paper we applied a variation of
R-learning (Schwartz, 1993), presented in Singh (1994) which uses
average reward as its performance criterion, a choice that was
dictated by the fact that we are interested in the average
performance measures of the manufacturing system such as average
WorkInProcess inventories, (WIP), etc. Average Reward
Reinforcement Learning is still considered to be at an early stage
with many important issues remaining open to discussion whereas
RL algorithms that maximize average reward currently existing in
the open literature are scarce. The first Average Reward RL
algorithm was R-learning (Schwartz, 1993) followed by some
variations of the original R-learning algorithm due to Singh (1994).
Model-based average reward RL algorithms were developed by
Mahadevan (1996) and Tadepalli and Ok (1998), Das et al. (1999)
introduced SMART, an average reward algorithm for semi-Markov
systems while Gosavi (2004) presented an RL algorithm for
maximizing average reward based on policy iteration.
 The RL control policy that we obtained by applying Singh’s
algorithm was compared to three existing efficient pull type control
policies, Kanban, Base Stock and CONWIP on the basis of
simulated data and found to outperform them in the task of
minimizing WIP subject to a Service Level, (SL), constraint. The
simulation experiments involved a single-product system with two
machines that allows backordering. Analytical numerical results are
presented along with a qualitative interpretation of our findings.
 The remaining material of this paper is structured as follows. In
Section 2 we offer the system description of a serial manufacturing
line. Sections 3-3.3 are devoted to the presentation of the Kanban,
Base Stock and CONWIP control policies. In Sections 4-4.2 we
discuss the main aspects of the Reinforcement Learning framework
and the algorithm that we applied in the underlying problem. We
report our findings from the simulation experiments that we
conducted for a two-station serial line in Sections 5-5.3. Finally, in
section 6 we state our concluding remarks and point to possible
directions for future research.

2. SYSTEM DESCRIPTION

In this paper we examine manufacturing systems that produce end
products of a single type and consist of several manufacturing
stations in series. A manufacturing station is a
manufacturing/inventory module that incorporates one or more
production operations (e.g. a single machine, a flexible
manufacturing cell etc) grouped together and labeled as the
manufacturing facility and a physical area of storage, the output
buffer of that station. Production in batches is not allowed in this
system as well as the reworking of parts in the same manufacturing
station. The case of defective station i parts is also ruled out. Raw
parts undergo production operations in the various manufacturing
stations sequentially and are gradually converted into final products
as they follow their downstream trajectory. By assumption, the
system has an infinite supply of raw materials, so the first
manufacturing facility is never starved. Demands arrive to the
system at random time intervals and request the release of one part
from the finished goods buffer. Provided that there is at least one
finished part in the last buffer, the customer demand is satisfied
instantaneously. If there are no final parts available, the demand is
backordered. In the case where the system operates under a
complete backordering policy and since customer impatience is
considered to be absent in our model, no customer demand is lost to
the system. Another option is the partial backordering policy where

backorders are not allowed to exceed a predefined level.
Manufacturing facilities are capable of processing only one part at a
time. As soon as a station i part is produced, it is placed in the ith
output buffer of the serial line where it waits for two conditions to
be satisfied in order to be released to the next manufacturing
facility: availability of the station i manufacturing station and
authorization by the control policy. There is no delay in material
handling between stations. Production control policies provide
alternative ways of coordinating the release of parts from one
station to another. Note that the points where production control is
exerted by the controller are not fixed but depend on the control
policy under which the system operates, e.g. one extreme condition
is when production control is applied only to the first station as we
will see in a subsequent section. All manufacturing facilities have
random production time, time between failures and repair time.
Time intervals between demand arrivals are also stochastic.

3. PULL PRODUCTION CONTROL POLICIES

Production control schemes that coordinate the production activities
in a serial line based only on actual occurrences of demand are
classified as pull type production control policies/mechanisms. Pull
type control policies implement the JustInTime, (JIT),
manufacturing philosophy and have attracted considerable attention
over the past years as they are widely considered to outperform
MRP-based production control systems. According to the JIT
manufacturing philosophy a manufacturing system should maintain
the minimum levels of safety stocks that are required in order to
meet the target service level while in the same time has the ability
to react rapidly to incoming orders. Pull production control policies
are efficient heuristics with the major advantage of implementation
simplicity that characterizes the host of them. The most important
issue when applying pull type control of a certain type in a
production system is to determine the best policy within this class
of policies by appropriate control parameter selection. In sections
2.2 through 2.4 we present three fundamental pull control systems
and namely, the Kanban (Sugimori et al, 1977), the Base Stock
(Buzacott and Shanthikumar, 1993) and finally the CONWIP
(Spearman et al, 1990) control mechanisms.

3.1 Kanban Control Policy

The Kanban production control policy was originally developed by
the Toyota Motor Company in the mid-seventies and turned out to
become almost a synonym for JIT manufacturing in the years to
follow as it provided a conceptually clear, easy to implement and
efficient way to coordinate the production process in a serial line.
The philosophy of the Kanban control mechanism is quite simple.
Each manufacturing station in a Kanban system has a fixed number
of station i production authorizations; the system’s control
parameters which are set at design time. The

iK production

authorizations (or kanbans) equal the maximum number of parts
that are allowed in station i. Whenever a station i part exits its
corresponding output buffer the controller authorizes the release of
a station i-1 part into the next manufacturing facility. Thanks to this
simple policy Kanban control achieves very tight coordination of
the several production stations appearing in a system. However this
happens in the expense of the manufacturing system’s ability to
respond swiftly to customer demands as the information of an
arrival is transmitted across the system station by station through
kanban authorizations. If there is a point where a part is not

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

34

available in order to be released to the next station, then no Kanban
card is sent to the upstream production facility and the transmission
of the information of the customer order is interrupted.

3.2 Base Stock Control Policy

The term base stock, also written as installation stock, is borrowed
from inventory systems theory (Axsäter and Rosling, 1993), and
refers to the initial levels of the systems intermediate and final

product buffers. The initial base stock levels iB are the system’s

only control parameters as the WIP is not constrained as in the
Kanban control mechanism by a finite number of local production
authorizations. The term WIP refers to the total number of parts that
exist in the buffers of the manufacturing system. “Station i WIP”
refers to the number of parts that are in the output buffer of this
station. On the contrary, the WIP in a Base Stock system is not
bounded and that is why this control policy can never be optimal as
it was proven in Veatch and Wein (1994). The arrival of a demand
is immediately transmitted to every manufacturing station in the
system authorizing it to produce a new part. The theoretically
strong point of this control mechanism is the high degree of
responsiveness to the demand’s fluctuations with the disadvantage
of insufficient inventory control.

3.3 CONWIP Control Policy

CONWIP control was introduced in 1990 by Spearman et al. as a
novel control mechanism for lean manufacturing, however as
argued by Liberopoulos and Dallery (2000), it can be easily
classified as a special case of the Kanban control system. In a
CONWIP system production control is applied only to the first
manufacturing station, whereas all the remaining stations have the
perpetual authorization to produce provided that this is feasible. The
CONWIP controller authorizes the first station to fabricate a new
station 1 part as soon as a part exits the finished goods buffer in an
effort to maintain the total WIP constant (CONstantWIP). An
inherent characteristic of this control mechanism is that the WIP
tends to accumulate in the last buffer. The system’s sole control
parameter is the maximum number of parts allowed in the last
buffer or equivalently the number of CONWIP type production
authorizations. A CONWIP manufacturing system can be seen as a
one-station Kanban system where all of the serial line’s production
activities have been functionally aggregated in a single
manufacturing facility.

4. FUNDAMENTALS OF REINFORCEMENT
LEARNING

The majority of the published research in Reinforcement Learning
is devoted to the following two models of optimal agent behavior;
the maximization of the cumulative sum of rewards and the
maximization of the discounted sum of rewards. The first case is
appropriate for tasks that are naturally sub-divided in separate
episodes while the second measure is used as a means to keep the
infinite sum of rewards bounded in continual tasks where the
decision-making process is repeated forever. Discounting future
rewards makes perfect sense when it comes to problems
encountered in e.g., economy, however this optimality criterion is
not well-tailored for numerous Reinforcement Learning tasks.
Many problems from queuing theory, manufacturing and other

cyclical tasks are studied under average measures and therefore it is
more logical to want to maximize the average reward per time step
collected by the agent:

∞→n
lim

 ∑
=

n

t
trn

E
1

1
 (1)

 A policy *π that maximizes average payoff per time step is
called gain-optimal. There are known issues concerning this
optimality framework that can be alleviated by adopting a more
generalized optimality criterion known as bias-optimality,
(Kaelbling et al., 1996, Mahadevan, 1996) that also takes into
consideration the reward gained in the initial phase of the agent’s
life. However for most practical purposes it is adequate to use the
gain-optimal model in addition to the fact that bias-optimal
algorithms are still considered to be experimental and significantly
less well-understood.
 A stationary policy π, is a mapping from states, Ss∈ , and
actions)(sAa∈ , to the probability),(asprob of choosing

action a when in state s, where S is the finite set of states in the
task and A(s) the permissible actions in state s. A policy in general
may be non-deterministic. Model-free Average Reward
Reinforcement Learning algorithms are iterative stochastic
approximation algorithms that use sample state transitions and
sample rewards generated by simulation models in order to estimate
relative value functions and average payoff. Informally, relative
value functions are functions of states (or state action pairs) to real
values that quantify the ‘‘usefulness’’ of being in a given state (or
taking a certain action when being in a given state) when following
a particular policy. Here, the term usefulness refers to the expected

future rewards of the agent. Let πρ denote the average expected

reward per time step under policy π :

 πρ =
∞→n

lim

∑
=

n

t
trn

E
1

1
 (2)

We define the relative value of state s under policy π as:

=−= ∑

∞

=
+ ssrEsV t

n
nt |)(

1

π
π

π ρ (3)

Similarly, the relative value of taking action a in state s, or state-
action value for short, is written as:

==−= ∑

∞

=
+ aassrEasQ tt

n
nt ,|),(

1

π
π

π ρ (4)

The solutions to the Bellman equation, (Equation 5), for average
reward MDPs are the average payoff and the relative state-action

values for the optimal policy *π , denoted by *ρ and *Q

respectively:

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

35

∑
∈

∈

+−=

Ss
sAa

ss asQaprobasrasQ
'

*

)'('
'

**)','(max)(),(),(ρ ,

AaSs ∈∈∀ , (6)

where)(' aprobss
 is the transition probability from state s to state

s’ when choosing action a, and),(asr the reward on executing

action a in state s.

4.2 Variation of R-Learning

The first average reward RL algorithm to appear in the literature
was Schwartz’s R-learning (1993), and since then only a few more
algorithms were added to this category, (see Introduction for a
listing of relevant algorithms). In this paper we used a variant of R-
learning developed by Singh (1994) in order to derive efficient
control policies for serial manufacturing lines. This improved
version of R-learning is presented in the following Listing 1.

Listing 1. Variant of R-learning (Algorithm 3)

t=0, initialize
tρ and),(asQt

 for all s, a.

• Let s be the current state. Select)(sAa∈ according to

action selection strategy, (e.g. e-greedy)

• Observe immediate reward 1+tr and next state 's

•)]','(max[),()1(),('11 asQrasQasQ tatttttt +−+−= ++ ραα
,)'(' sAa∈

•)],()','(max[)1('11 asQasQr ttattttt −++−= ++ βρβρ ,

)'(' sAa∈

• Decrease parameters α and β, and the exploration
parameter e

• Loop

tρ and),(asQt are approximations of the average reward and the

state-action values, respectively, in epoch t.)(sA is the set of

admissible actions in state s.
tα is the learning rate for the Q-values

and
tβ is the learning rate for the average reward estimate, in

decision making epoch t. e is the exploration parameter.

4.3 Methodology and Notation

In this section we discuss the way we fit the problem of
coordinating production in a serial line into the Reinforcement
Learning framework. First of all we must point out that there is a
subtle distinction that needs to be drawn between the environment’s
relative position to the agent in the RL formulation and in the real
world. In an actual manufacturing line the controller is embedded to
the system whereas in the RL model the decision-making agent and
the controlled system are two distinct entities interfaced together.
The discrete set of states that the agent can find itself in is denoted

by S and is given by the following expression:

 },....,2,1:),,{(niBckOMS ii == (7)

where n is the number of manufacturing stations and }2,0,1{∈iM

are the possible conditions of the station i manufacturing facility.
We denote failure in the manufacturing facility by 0, working
condition by 1 and the state of being idle by 2. ,....}2,1,0{∈iO is the

station i buffer’s state and finally, ,....}2,1,0{∈Bck is the

number of backordered demands. The available actions to the
controller are authorize production and do not authorize production
of a new station i part for each of the n manufacturing stations,

hence the number of admissible actions is n2 . Let A denote the
action space; as a result the complete state-action pair space is
written as AS× . The decision-maker interacts with the controlled
system at discrete time steps ,...3,2,1=t where the agent receives

a representation of the environmental state and based on that
information selects an action.
Each decision made by the agent has an associated cost which is
given by Equation 7:

 ∑
=

−−=
n

i
iit BckcOqr

1
' (8)

where

iO and Bck are the time-averaged WIP in buffer i and level

of backordered demands respectively until the next decision making

epoch while iq and c are positive constants. An action that yields

relatively large amount of reward (or to be more precise low cost in
our model) causes an improvement on the corresponding relative
action value. In the algorithm that we implemented for the purposes
of this paper state-action pair values are stored in a look-up table
but in order to cope with large scale problems the use of some kind
of a function approximation would be imperative. At each discrete

time step t the agent implements a policy tπ on the basis of the

relative Q-values of the state-action pairs. Most of the time the
controller acts greedily, that is, it selects the action with the higher
Q-value but in a fraction e of time it deviates from this behavior by
selecting actions randomly in order to explore actively the state-
action space. The agent explores intensively in the initial phase of
the control task and then the amount of exploration slowly decays
with time in order to allow convergence to the derived as optimal
policy. The agent’s goal which is conveyed to it through the cost
assignment scheme as we will elaborate in the section to follow is
to minimize WIP inventories subject to a service level constrain:

 ∑
=

n

i
iWIP

1

min (9)

under the constraint:

Service Level>t%

where t is the service level target also known as the fill rate and
specifies the proportion of customer orders which are satisfied
instantaneously from the existing finished products stock.

5. SIMULATION

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

36

5.1 Simulation Case

The simulation experiments involved a two – station manufacturing
line with equal operation times that operates under a policy that
allows backorders. Machines operate with service rates which are
normally distributed random variables with mean 1.0 parts/time unit
and s.d. 0.01 ()1.0,0.1(~ NRp

). Repair to failure times are

exponentially distributed with mean 1000 time units. Failures are
operation dependent. Repair times are also assumed exponential
with a MTTR of 10 time units. Times between two successive
customer arrivals are exponential random variables with mean 1.66
time units. Simulation time is set to 30000.0 time units. The
objective is to minimize WIP while maintaining a 90% service
level.

5.2 Experimental Setup

Prior to comparing the RL derived policy to the pull type heuristics
we need to determine the best control parameters for each one of
the Kanban, Base Stock and CONWIP policies. The parameters of
the Kanban policy are the number of local production

authorizations denoted by iK while the Base Stock policy is

characterized by the initial base stocks denoted by iB . The

parameters of a CONWIP system are the C global, (CONWIP type),
production authorizations and the initial stock of intermediate and
final parts. Note that by increasing the number of kanbans, base
stocks or CONWIP type authorizations, the average throughput of
the serial line increases and hence, the service level, but so does the
WIP along with the related costs. In order to find the best
parameters for each pull control policy we perform an incremental
search over the space of feasible parameter sets. The results are
displayed in Table 1.

Table 1. Pull production control policies parameter sets

 11 / BK 22 / BK C

Kanban 1 4 -

Base Stock 0 5 -

CONWIP 2 3 5

The actions available to the agent are to authorize or not production
in each one of the system’s stations, therefore: Α={[1 1],[1 0],[0
1],[0 0]}. In order to constrain the number of the system states we
define the permissible buffer conditions to be }4,3,2,1,0{∈iO and

we allow only partial backordering: }4,3,2,1,0{∈Bck . The

default course of action when the inventory in a buffer rises beyond
the allowable limit is to stop production in that certain station. The
opposite happens when the number of backordered demands
exceeds the predefined levels given that it does not violate the
previous rule. The upper limit for the buffer levels is analogous to
the control parameters of the pull type policies and the maximum
number of unsatisfied demands was set also on the basis of the pull
heuristics performance. We should point out that these situations
where the control is taken away from the RL agent in fact are very
unlikely if impossible to occur in practice due to the cost
assignment scheme and the simulation model’s parameters but there
needs to be a way to handle them for consistency reasons. The
complete state-action space then consists of 4(actions)×32(machine
states) ×52(buffer states) ×5(bck states) = 4500 Q-values. As we

have mentioned in former sections the only feedback available to
the decision-maker is the reinforcement signal. It is essential that
this signal has all the necessary information in order to
communicate to the agent what we expect it to do. If we used Eq. 9
as the cost function, the agent would try to minimize the average
WIP with no constraints whatsoever. The agent would minimize
WIP easily simply by never giving the order to produce a single
part. Our goal is to minimize WIP under the constraint of
maintaining the service level above a specified target value. This is
achieved by finding the appropriate values for parameters 2,1, =iqi

and c from Equation 7. Parameters 2,1, =iqi can be interpreted

as the cost of storing one part in output buffer i per time unit and c
as the cost of unsatisfied demand per time unit. For example, if we

increase parameter 2q , the resulting policy will yield lower WIP in

buffer 2 at the expense of a lower service level. After a lengthy
trial-and-error procedure we came up with 0.1021 == qq and

0.100=c as the most suitable parameters for this task.

5.3 Results-Discussion

This section is devoted to the presentation and analysis of the
numerical results that were produced via experimentation with
simulation models. It is known from Reinforcement Learning
theory that in order for the agent to converge to the true state-action
values and average reward, all states and actions must be visited
infinitely many times. Luckily, for most practical purposes a large
amount of exploration will do the job, that way avoiding
exhaustively long simulation times. Note that a key feature that
renders RL superior to other intelligent methodologies is that it does
not spend much time on evaluating state-actions with low
probabilities of occurrence but focuses at maintaining reliable
estimates for the Q-values of the more probable state-action pairs.
In order to ensure convergence stability we set the decay factors of
the learning rates to very low values. The RL algorithm was
executed for 20 times the simulation time which was used to
evaluate the performance of the pull type production control
policies, that is, 6000003000020 =× time units. Given that the
mean time between two successive customer demands was set to
1.66 time units (see section 5.1), approximately 360000 demands
arrived to the system in this simulation time. All of these demands
were ultimately satisfied by the system so there were, roughly,
another 2(machines) × 360000(parts)=720000 “production in
machine i” simulation events. If we take into consideration the
events “failure in machine i” and “repair in machine i” the number
of simulation events/decision making epochs is well beyond one
million. This simulation time allows all state-action pairs to be
visited many times and thus, calculate reliable Q-values estimates.
Figure 1 shows the convergence of the RL algorithm. We set

,0.0),(0 =asQ as,∀ . This implies that all admissible actions in all

states have initially equal probabilities to be selected by the
controller, including the optimal ones. As the number of iterations
advances, the algorithm actually concentrates its choices to the
perceived as optimal ones but this might not be clearly depicted in
the average reward plot (Figure 1) due to the inaccuracy of the
average reward estimate in the initial phase. Figure 1 illustrates the
average reward estimate calculated by the RL algorithm and not the
actual average reward. Note that in Singh’s algorithm, the average
reward estimate is calculated with the help of the immediate reward

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

37

and the state-action values)','(max ' asQta
 and),(asQt

 (see

Listing 1).

0 100 200 300 400 500 600 700 800 900 1000

10

12

14

16

18

20

RL ALGORITHM CONVERGENCE

SIMULATION TIME (x 600)

A
V

E
R

A
G

E
 R

E
W

A
R

D

Figure 1. Average reward of the RL control policy

The initial heavy exploration phase is depicted in the fluctuations of
the curve in Figure 1, while in the right-most part of the plot where
the learning curve forms a straight line we can see the convergence
phase of the algorithm. At this point we should mention that if the
learning rates are prevented from decaying to zero the algorithm
does not converge completely and is rendered suitable for a non-
stationary problem where, i.e. the demand generating process
slowly changes with time, a situation which is impossible to handle
for the pull heuristics. The average WIP distribution through out the
system and the backordered demands average together with the
service rate that was achieved by the steady RL policy as well the
ones of the three pull type control policies are presented in Table 2.

Table 2. Average buffers levels-backorders averages-service levels

1O

2O Bck SL

Kanban
0.39 2.88 0.18 93.12%

Base Stock
0.11 3.24 0.17 93.68%

CONWIP
0.05 3.28 0.17 93.70%

RL
0.09 3.11 0.18 93.10%

The simulated data are presented graphically in Figure 2. For all
policies we reported service levels of approximately 93% and an
average of about 0.18 unsatisfied customer orders. The
characteristic attribute of the Kanban control policy which is tight
coordination between the various manufacturing stations of the
system is evident in the first row of Table 2. Indeed, the Kanban
system displays the most uniform WIP distribution among all pull
type policies but also it maintains the highest WIP inventory in
buffer 1 during the system’s operation. The Base Stock mechanism
offers a significant improvement over the Kanban policy in terms of
WIP accumulation in the first buffer thanks to the initially zero base
stock in that buffer but this happens in the expense of WIP build-up
in the finished goods storing facility. In a system that operates
under the CONWIP policy all the machines except the first one

have the perpetual authorization to produce whenever they can, and
this is why WIP tends to accumulate in the last buffer.

mean WIP total

3.1

3.15

3.2

3.25

3.3

3.35

3.4

Kanban Base
Stock

CONWIP RL

control policies

Figure 2. Total WIP

This situation is depicted in Table 2 where we observe that the
average finished products inventory in the CONWIP system is the
highest of all control policies. As a consequence, parts are not
stalled in intermediate buffers due to e.g. lack of production
authorization which in turn results in very low average WIP levels
in the first buffer. The RL policy produced slightly higher WIP
levels in the first buffer than the best policy found in this part which
was CONWIP. It also ranked second in constraining WIP in the
second buffer too. However the policy derived using the
Reinforcement Learning algorithm outperforms the other three
policies when it comes to total WIP as we can see in Figure 2. We
could argue that the RL policy combines the desirable aspects of the
various pull type control mechanisms while omitting their
weaknesses. In order to gain insight of the behavior of the RL
policy we examined the Q-values of state-action pairs that we were
particularly interested in. It is obvious that the RL policy is
considerably more complicated than the pull heuristics as it
explicitly maps several hundreds of possible system states into
actions and thus not as conceptually clear as these policies but this
is not necessary a drawback in the modern automated industrial
reality. The reasons why the RL policy outperforms the existing
control policies can be sought in the fact that it is more state-aware
than classical pull type mechanisms. None of the Kanban, Base
Stock and CONWIP policies takes into consideration the events of
machine break down and repair and this leads to sub-optimal
behavior in many cases. For instance, consider the case where the
second production facility is under repair. The CONWIP and Base
Stock control policies will keep authorizing the first station to
produce new parts regardless of the fact that these cannot be
released to the downstream station thus, leading to excessive
inventory accumulation in the first buffer. On the other hand, the
Kanban control system will not authorize production in a station
unless there is a free kanban authorization available, a condition
that severely impedes the system’s ability to react to customer
arrivals. It is true that the RL policy may not behave optimally for
numerous rarely visited states but the overall improvement offered
to the system performance is more than evident.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper we use artificial intelligence methodologies to derive
efficient, near-optimal control policies for serial manufacturing

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

38

lines. For this purpose we apply an algorithm from the field of
Average Reward Reinforcement Learning. After a brief
introduction to the central concepts in Reinforcement Learning and
a description of the learning algorithm we proceed to a detailed
presentation of the course of action that we followed in order to
formulate the problem of production control as a Reinforcement
Learning task. We evaluated the performance of the derived control
policy through simulation and compared it with those of well-
known pull type production control policies. Our experiments
involved a manufacturing system with two unreliable machines in
tandem where backordering is allowed and a stochastic demand
generating process. The competing policies were evaluated on the
basis of minimizing WIP subject to a service level constrain. The
RL policy was found to outperform the Kanban, Base Stock and
CONWIP production control policies in minimizing total WIP
primarily due to the fact that it is more state-dependent than the
above mentioned heuristics, as it is pointed out in the analysis
accompanying the presentation of the numerical results. We plan to
proceed to more extensive experimentation in the future in order to
produce additional data as well as to extend the use of the RL
methodology in manufacturing systems of a different type, as job-
shops etc. The tabular approach that we use in this paper is
somehow limiting in reference to the size of the problems that it can
be used in. As a consequence, another logical direction for research
would be to use some kind of function approximation, i.e. an
artificial neural network in order to handle large scale problems

REFERENCES

[1] S. Axsäter and K. Rosling, ‘Installation vs. echelon stock
policies for multilevel inventory control’, Management Science,
39(10), 1274-1279, (1993).

[2] R.E. Bellman, Dynamic Programming, Princeton University
Press, Princeton, 1957.

[3] D. Bertsekas, Dynamic Programming: deterministic and
stochastic models, Prentice Hall, New York, 1987.

[4] B.J. Berkley, ‘A review of the kanban production control
research literature’, Production and Operations Management, 1(4),
393-411, (1992).

[5] J.A. Buzacott, J.G. Shanthikumar, Stochastic Models of
Manufacturing Systems, Prentice Hall, New York, 1993

[6] T. Das, A. Gosavi, S. Mahadevan and N. Marchallek, ‘Solving
semi-markov decision problems using average reward
reinforcement learning’, Management Science, 45(4), 560-574,
(1999).

[7] S.B. Gershwin, Manufacturing Systems Engineering, Prentice
Hall, New York, 1994.

[8] A. Gosavi, ‘A reinforcement learning algorithm based on policy
iteration for average reward: empirical results with yield
management and convergence analysis’, Machine Learning, 55(1),
5-29, (2004).

[9] R. Howard, Dynamic Programming and Markov Processes,
MIT Press, Cambridge,1996.

[10] L.P. Kaelbling, M.L. Littman, A.W. Moore, ‘Reinforcement
Learning: a survey’, Journal of Artificial Intelligence Research, 4,
237-285, (1996).

[11] F. Karaesmen, Y. Dallery, ‘A performance comparison of pull
type control mechanisms for multi-stage manufacturing’,
International Journal of Production Economics, 68, 59-71, (2000)

[12] G. Liberopoulos and Y. Dallery, ‘A unified framework for pull
control mechanisms in multi-stage manufacturing systems’, Annals
of Operations Research, 93, 325-355, (2000)

[13] M.L. Littman, T.L. Dean, L.P. Kaelbling, ‘On the complexity
of solving MDPs’, In Proceedings of the Eleventh Annual
Conference on Uncertainty in Artificial Intelligence, Montreal,
Quebec, Canada, (1995)

[14] S. Mahadevan, ‘Average reward reinforcement learning:
foundations, algorithms and empirical results’, Machine Learning,
22, 159-196, (1996).

[15] M.L. Putterman, Markov Decision Processes, Wiley
Interscience, New York, 1994.

[16] A. Schwartz, ‘A reinforcement learning method for
maximizing undiscounted rewards’, In Proceedings of the Tenth
Annual Conference on Machine Learning, 298-305, (1993)

[17] S.P. Singh, ‘Reinforcement learning algorithms for average-
payoff markovian decision processes’, In Proceedings of the
Twelfth National Conference on Artificial Intelligence, 202-207,
(1994)

[18] M.L. Spearman, D.L. Woodruff, W.J. Hopp, ‘CONWIP: a pull
alternative to kanban’, International Journal of Production
Research, 28, 879-894, (1990).

[19] Y. Sugimori, K. Kusunoki, F. Cho and S. Uchikawa ‘Toyota
production system and kanban system materialization of just-in-
time and respect-for-humans systems’, International Journal of
Production Research, 15(6), 553-564, (1997).

[20] R.S. Sutton and A.G. Barto, Reinforcement Learning: an
introduction, MIT Press, Cambridge, MA, 1998.

[21] P. Tadepalli and D. Ok, ‘Model-based average reward
reinforcement learning’, Artificial Intelligence, 100, 177-224,
(1998).

[22] M.H. Veatch, L.M. Wein, ‘Monotone control of queueing
networks’, Queueing Systems, 12, 391-408, (1992).

[23] M.H. Veatch, L.M. Wein, ‘Optimal control of a make-to-stock
production system’, Operations Research, 42, 337-350, (1994).

[24] C.D. Paternina-Arboleda, T. K. Das, ‘Inteligent dynamic
control policies for serial production lines’, IIE Transactions, 33(1),
65-77, (2001)

[25] S. Mahadevan and G. Theocharous, ‘Optimizing Production
Manufacturing using Reinforcement Learning’ , In Proceedings of
the Eleventh International FLAIRS conference , 372-377, (1998).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

39

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

40

Efficient Learning of Dynamics Models Using Terrain
Classification

Bethany R. Leffler and Christopher R. Mansley and Michael L. Littman1

Abstract. Terrain classification in robotics has heavily focused on

determining a region for traversal, while also labeling obstacles. Our

work attempts to expand this essentially binary viewpoint and to use

terrain classifiers as an indicator for switching between a set of sys-

tem dynamics. By learning multiple models of the system dynamics,

the robot is able to assess alternative paths based on traversal costs of

different terrain types instead of strict distance metrics. We demon-

strate a system that reliably learns an optimal control policy using

this additional terrain information and contrast it with several sys-

tems based on more traditional methods that fail to reliably complete

the same task.

1 Introduction

Terrain classification for road following is often a binary road (pass-

able) versus non-road (impassable) classification. As such, the robot

cannot distinguish more or less passable terrains so as to prefer more

passable terrains but allowing for less passable terrains to be tra-

versed if alternatives are limited or if doing so would lead to a greatly

reduced travel time. In this work, we take a more utility-oriented

approach, distinguishing between a wider class of terrains, learning

distinct dynamics models for each, and using these models to plan

cheapest paths taking terrain into consideration.

The work in this paper frames this problem in the setting of re-

inforcement learning [16]. Recent work in the field has provided

bounds on how much experience is needed to learn optimal control

policies [10]. These bounds are typically proven with no assumptions

about similarities between states, which leads to learning algorithms

that scale at best linearly with the number of states. In a robotic do-

main, where the space of inputs is potentially infinite, these bounds

are typically not useful. Instead, this paper builds on related work that

exploits structure in the underlying state space to reduce the quantity

of information needed to learn accurate models [12]. By using au-

tomatically extracted classes to index separate dynamics models for

learning, the agent is able to perform more flexible path planning.

2 Related Work

A typical implicit assumption in robot-navigation research is that the

robot has one dynamics model, which describes how it traverses from

one state to the next. One example is in the representation of the state

transition model in a Kalman filter’s predict step, which captures the

prediction of the next state from the current state [9]. One of the ways

of ensuring that this assumption holds is to have the system follow

surfaces appropriate for the model. This approach is often referred to

as road following [5]. A common way to determine what is a road

1 Rutgers University

Figure 1. Image of the LEGO R© Mindstorms NXT robot in the

experimental environment.

and what is not is to use a supervised learning algorithm to construct

a terrain classifier [13]. When roads are not marked, such as on dirt

roads or in clearings, a combination of sensors such as laser range

finders and video cameras can be used in this binary terrain classi-

fication task to train an agent to learn to recognize the road through

supervised [14] and self-supervised techniques [6]. Research has also

been done in terrain modeling to determine the pass-ability of an area

when the ground cannot be seen [17].

These approaches, when successful, result in the robot navigating

correctly to its goal location along a single terrain class. However,

the path taken might not be optimal in a utility-theoretic sense. By

using the assumption that there is only one dynamics model in the

world, the agent is unable to fully calculate the best path to the goal.

The plan or policy generated would be sub-optimal because a single

model would try to encompass both the good (road) and bad (off-

road) parts of the world; this oversimplification can lead to improper

policy cost estimation. By learning multiple dynamics models, the

agent can more fully model the dynamics of the environment and

calculate a better policy.

From a reinforcement-learning perspective, navigation algorithms

are often assessed based on the agent’s learned policy and the how

far that policy is from optimal. Obtaining a good policy often means

fully exploring the environment. Exploration, though, comes at a

cost, and therefore must be done in an efficient manner [1]. Even

an efficient exploration algorithm may not be enough to converge to

a good policy in a reasonable amount of time. For this reason, many

algorithms use generalization techniques, such as function approxi-

mation, to limit the amount of exploration needed to learn about the

entire environment [8].

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

41

Our contributions in this paper include using classes or types ex-

tracted from images of terrain to allow for the generalization of ac-

tion models across states, which speeds up the learning time while

allowing for efficient exploration. We also demonstrate experimental

environments that cannot be completed reliably without the use of

separate state dynamics, showing that not only does this technique

speed learning, but some situations actually require it.

3 Background

Previously, we introduced the idea of relocatable action models

(RAM) to enhance exploration [11]. Instead of using the traditional

Markov decision process (MDP) representation of states, actions, and

transition functions, we used the RAM representation of states, ac-

tions, types and outcomes [15]. This alternative representation of the

underlying MDP is defined by 8-tuple 〈S,A,C,O, κ, t, η, r〉, where

S is a set of states, A is a set of actions, C is a set of types, O is a set

of outcomes, r : S → < is the state dependent reward function, and

κ : S → C is a mapping indicating how each state maps to a type or

cluster. The function t : C×A→ Pr(O) is a mapping known as the

relocatable action model. It captures effects of different actions in a

state-independent way by mapping a type and an action to a proba-

bility distribution over possible outcomes. In this work, outcomes are

the change in location and orientation in robot coordinates. The map-

ping η : S×O → S is the next-state function. It takes a state and an

outcome and computes the resulting next state by transforming from

robot coordinates to world coordinates.

In this paper, our vision-based terrain-classification system is what

defines the type mapping κ. This mapping converts perceptual fea-

tures of the state space into a finite set of terrain types. We show that

κ can be computed a priori using a generic vision system. With κ and

η defined, the learner can focus on the terrain-specific action model,

resulting in fast, accurate learning.

Whereas prior work [11] used a hand-tuned classification of states

to types, the current paper shows that this mapping can be extracted

automatically and used successfully in the learning setting.

4 System Architecture

Figure 2. Flow chart of the system architecture. The dashed lines indicate

information passing that occurs at startup.

Figure 2 shows the flow of data through our system for a robotic

domain. Before the robot is placed in the environment, a picture

is taken with an overhead camera and sent through an image-

segmentation engine to determine terrain classification (see Sec-

tion 4.1). Classification information is then stored as an additional

feature for each state.

Once the state space is defined, the robot is placed in its starting

configuration and the agent queries the localization system for the

robot’s position in the world. Using this information, the agent, with

the guidance of the RAM-Rmax algorithm (see Figure 3), chooses

which action to take based on the outcomes it has previously seen.

The selected action is then sent to the robot to execute. After ex-

ecution is complete, the agent once again retrieves the robot’s loca-

tion information and uses it to calculate the latest outcome, which is

added to a list of outcomes seen in the same terrain type. The agent

then chooses the next action to take. This process continues until the

localization system tells the agent that the robot is in the goal re-

gion or out of bounds. These occurrences end an episode; the robot

is placed back in the starting location to execute another episode.

4.1 Terrain Classification

We used a IEEE1394 video camera to take an image of the world

without the robot and then fed the image into the Edge Detection and

Image SegmentatiON (EDISON) system [4] where similar terrains

are determined based on color, texture, and proximity of pixels. Since

the image-segmentation system determines the number of clusters on

its own, the one parameter to be set is the minimum number of pixels

that a cluster can contain. This value is set to the number of pixels

that the robot occupies in the image to ensure that all of the robot’s

wheels can occupy a single patch of terrain at the same time.

The clustered image that EDISON returns is then converted into

an indexed image. To limit the number of spurious clusters, all clus-

ters that appear in fewer than
|S|
10

states have their pixels reassigned

to adjacent segments. The remaining clusters are used to determine

the terrain-type feature of the state space. These terrain classifica-

tions will be used to determine to which dynamics model the learned

outcomes will be applied.

4.2 Localization

The localization system is a standard fiducial-based system, which

for these experiments acts as an indoor global positioning system

(GPS). Using the same overhead camera as above, the location of

a marker affixed to the robot is obtained using commonly available

color-segmentation software [2]. The type of marker used is based on

work done for a robotic soccer application [3]. The typical accuracy

of this system is less than 5mm.

4.3 Learning The Dynamics Model

After an action is taken in state s and the position of the new state s′

is fed back to the agent, the displacement and change in orientation

between s and s′ are calculated. These differences are stored as a list

of outcomes for κ(s). Instead of maintaining a list with an outcome

for every action taken, which could grow without bound, the list of

outcomes keeps a tally tC of how many times that outcome C has

been seen. This approach allows for proper calculation of the prob-

ability of seeing that outcome while minimizing the size of the list

that the algorithm has to traverse. Since the number of possible out-

comes is finite due to the granularity of the localization system, the

maximum size of the outcome list is also finite.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

42

4.4 Planning

When deciding which actions to take in the environment, the agent

uses a parameterized variation of the Rmax algorithm that sets the

expected reward of taking an action in a terrain to the maximum re-

ward, Rmax, if that combination of terrain and action has not been

experienced often. An action becomes “known” for a particular ter-

rain when the robot has performed that action in that terrainM times,

where M is a free parameter. Once the action is “known”, the value

for that action becomes the solution to Q(s, a) =

r(s, a) + γ

(∑
o∈O

tC(κ(s), a, o)

z
×max

a′∈A
Q(η(s, o), a′)

)
, (1)

which is updated as tC changes Here, z is a normalization constant.

To calculate values, all outcomes for that terrain type need to be

mapped back from feature space into state space. For instance, if the

robot is in state swith x = 35, y = 25, θ = 90.0 and the outcome o1
is a displacement of magnitude 2.0 in direction 315.0 and the change

in orientation is 314.0 degrees, then s′ for that outcome would be the

state with the features x = 36, y = 26, θ = 44.0. This calculation

is done for every outcome and the reward for each possible s′ is

weighted by its probability and summed.

Once the value for each action is calculated by the algorithm (see

Figure 3), the agent chooses the action with the highest value and

sends the corresponding command to the robot via Bluetooth
R©.

While planning can take several milliseconds, these calculations can

be performed while the robot is performing its actions (each action

takes approximately one second), resulting in no computational de-

lay.

5 Experiment

To quantify the benefits of using image segmentation for better per-

formance, experiments were performed in a real world robotic envi-

ronment.

5.1 Experimental Setup

For our experiment, we ran a LEGO
R© Mindstorms NXT (see Fig-

ure 1) on a multi-surface environment. This domain, shown in Fig-

ure 4, consisted of a highly variable region comprised of rocks em-

bedded in wax and a more deterministic carpeted area. The goal was

for the agent to begin in the start location (indicated in the figure by

an arrow) and end in the goal without going outside the environmen-

tal boundaries. The rewards were−1 for going out of bounds, +1 for

reaching the goal, and−0.01 for taking an action. Reaching the goal

and going out of bounds ended the episode and resulted in the agent

getting moved back to the start location.

One difficulty of this environment is the difference in dynamics

models. Figure 5 shows the outcomes observed by the robot on both

the rock and carpet surfaces. The center of the circle represents the

starting location of the robot. The dashed lines indicate the angle (in

degrees) and distance (in pixels) of displacement. From left to right,

this figure shows the outcomes of the left turn, go forward, and right

turn actions on for the rock (top) and carpet (middle) surfaces. The

bottom row shows the same outcomes as above, but combines the

terrains to demonstrate the amount of noise that is introduced when

the terrains are not distinguished. Some actions, such as turning right

on rocks, are more sparse than others due to the number of times that

an action was taken during exploration.

Global data structures: Q, tC
Constants: Rmax, M

INITIALIZE():

for c ∈ C, a ∈ A, o ∈ O:

tC(s, a, o) = 0
for s ∈ S, a ∈ A:

Q(s, a) = Rmax

UPDATE(s, a, s′):

o = s′ − s†
tC(κ(s), a, o) = tC(κ(s), a, o) + 1
for s ∈ S:

for a ∈ A
Q(s, a) = Rmax

repeat until Q(s, a) stops changing:

for s ∈ S:

for a ∈ A:

z =
∑
o∈O

tC(κ(s), a, o)

if z ≥M

Q(s, a) = r(s, a) + γ
∑
o∈O

tC(κ(s), a, o)

z

×max
a′∈A

Q(η(s, o), a′)

†
This subtraction is a transformation expressing s′ in the coordinate frame of s.

Figure 3. The RAM-Rmax algorithm.

Figure 4. Image of the environment. The start location and orientation is

marked with an arrow. The goal location is indicated by the circle. Green

pieces of poster board are shown here marking the boundaries of the

environment.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

43

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(a) Left turn on rock

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(b) Forward on rock

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(c) Right turn on rock

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(d) Left turn on carpet

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(e) Forward on carpet

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(f) Right turn on carpet

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(g) Left turn on both
terrains

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(h) Forward on rock
and carpet

30

60

-120

90 -90

120

-60

-30
0

 20 40 60

(i) Right turn on rock
and carpet

Figure 5. Outcomes learned by the robot for different actions and surfaces.

Due to the close proximity of the goal to boundary, the agent needs

an accurate dynamics model to reliably reach the goal. To make this

task even more difficult, the actions were limited to going forward,

turning left, and turning right. Not allowing the agent to move back-

wards increased the need for the agent to accurately approach the

goal reliably. For example, if the robot enters the narrow portion

of the environment facing away from the goal, it is not able to turn

around without going out of bounds. As such, a robot with an inaccu-

rate transition model would be likely to think this task is impossible.

For the experiments, we compared the RAM-Rmax and fitted Q-

learning [7] algorithms with and without image segmentation. We

would have liked to run the Rmax algorithm for a comparison, but it

was not plausible to do so due to the robot’s battery life—too much

experience was needed to train the algorithm. All algorithms were

informed of the reward function—it did not need to be learned. The

algorithm with no image segmentation learns one action model for

the entire domain. Figure 6 shows the results of the EDISON image-

segmentation engine when fed in the image of the world and the min-

imum region to segment. Recall that the minimum region to segment

was specified to be the number of pixels that the robot occupies in

the image, which for this experiment was 4000 pixels.

For both agents, the world was discretized to a forty by thirty by

ten state space instead of the camera’s full resolution of 640 by 480

by 360 degrees of orientation. This coarse discretization was used to

limit the number of states that the robot could occupy at once. Lastly,

each algorithm had the value of M set to ten, which was determined

after informal experimentation.

6 Results

Figure 7 shows the average performance and standard deviation of

the RAM-Rmax and fitted Q-learning algorithms with and without

image segmentation over five runs of twenty episodes. When RAM-

Rmax used image segmentation to determine the number of surface

types in the environment, RAM-Rmax reached the goal in 61% of

Figure 6. Resulting discretized segmented image from EDISON of the

environment showing two different surface types. Several states were

mislabeled due to the image processing algorithm, but these mislabelings did

not harm the results.

-25

-20

-15

-10

-5

 0

 5

 0 5 10 15 20

Cu
m

ul
at

ive
 R

ew
ar

d

Episode

Average Cumulative Reward

RAM-Rmax with classification
RAM-Rmax without classification

FittedQ with classification
FittedQ without classification

Figure 7. Graph of the RAM-Rmax and fitted Q-learning algorithms’

average cumulative reward with and without terrain classification via image

segmentation.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

44

the episodes as opposed to 22% of the episodes when using the as-

sumption that all surfaces were the same. This difference is shown in

greater detail when looking specifically in the last 10 episodes after

some learning had taken place. Narrowed to these instances, the suc-

cess rates are 96% and 34%, respectively. Fitted Q-learning was not

able to reach the goal in any of the runs with or without the image

segmentation. Doubling the number of episodes to 40 in a run also

did not result in any positive reward. Indeed, published results with

this algorithm suggest hundreds or thousands of episodes are often

needed.

WS
NS 1
NS 2

Figure 8. Diagram showing paths learned by the algorithm with

segmentation (WS) and with no segmentation (NS) en route to the goal

(shown in yellow). NS1 demonstrates a sample path in which the agent

judged the goal as unreachable and so minimized negative reward by exiting

the environment quickly. NS2 shows a sample path in which the agent’s

inaccurate model causeed it to miss the goal. “X” marks the state used for

the example in Section 7.

The figure also shows a great variation in the performance of the

RAM-Rmax algorithm when it did not use image segmentation. The

reason for this difference is the variability in the dynamics model that

the agent learned for each run. By learning varying dynamics mod-

els, the chosen path of the same agent changed drastically between

runs as shown Figure 8. In two of the five runs, the agent thought

that it was valuable to navigate towards the goal from early in the

run. However, the dynamics model learned was noisy, and the agent

would accidentally drive out of bounds when approaching the goal.

In the other half of the runs, the agent did not think that it was pos-

sible to reach the goal based on its learned dynamics model, and,

therefore, would drive out of the environment as quickly as possible

to minimize negative reward.

In contrast, the agent that used image segmentation learned that

the rocky surface was unpredictable, but that the carpet surface al-

lowed for consistent actions. Once these two surfaces were learned,

the agent was able to arrive at the goal reliably, seldom over-shooting

of the goal, as shown in Figure 8.

7 Discussion

The two RAM-Rmax algorithms outperformed both of the fitted Q-

learning algorithms due to the efficiency with which they use expe-

rience data. RAM-Rmax with and without image segmentation was

able to use its learned model to generalize between states because of

the similarity of the dynamics in these states. Since fitted Q-learning

does not model the environment, its generalization ability was lim-

ited to exploiting local consistency in the value function. Throughout

the twenty episodes, neither of the fitted Q-learning algorithms had

been able to take advantage of any structure and were still active

exploring to learn values. As such, they had learned very little and

ended up going out of bounds every time.

The performance discrepancy of the two RAM-Rmax algorithms

can be better explained when looking at the learned value function

of the two algorithms. For example, when using the RAM-Rmax al-

gorithm with image segmentation, the average expected reward of

a state near the goal (X = 25, Y = 15, θ = 0, marked with an

“X” in Figure 8) was 0.450 with a standard deviation of 0.194 in

comparison with the algorithm without image segmentation which

on average calculated the value of the same state to be 0.1782 with

a standard deviation of 0.373. These values vary because of the dy-

namics models learned. The algorithm without image segmentation

performed as if the goal was on the rocky surface. By increasing the

amount of context the RAM-Rmax algorithm uses to distinguish the

dynamics, it is able to better model its environment.

However, there is a limit to how much improvement additional

context can add. If the terrain classifier were to have found three

types instead of two, the agent might have been able to model the

dynamics of when its front wheels were on one surface and its back

wheel on another. If the agent declared each rock its own surface,

the agent would be able to model its likelihood of getting stuck on

that rock. The problem with this approach is scalability. The more

surface types the learner recognizes, the less it generalizes and the

more exploration it needs to do. In the limit, as the number of types

approaches the number of states, this algorithm becomes equivalent

to (non-generalizing) Rmax.

By scaling the number of terrain types, an algorithm implicitly

assumes information about the structure of the environment. At one

end of the scale, the assumption is that there is one class that all the

world adheres to as in road following. At the other, each state has its

own idiosyncrasies and, therefore, should be modeled individually.

8 Conclusions and Future Work

Optimal decisions for path planning require accurate models for pre-

dicting the outcomes of actions. In this paper, we examined a method

for building accurate models by partitioning learning experiences ac-

cording to a set of automatically extracted terrain classes. We found

that the resulting dynamics models led to a utility-based path plan-

ning system that learned quickly to make effective decisions. Com-

pared to approaches that overgeneralize (estimate a single transition

model) or undergeneralize (estimate separate models for each state),

this approach makes effective use of experience and succeeded at

reaching the goal location at a significantly higher rate in our exper-

iments.

Currently, the system is dependent on the sensory features cor-

relating well with differences between terrains. In future work, we

will explore using feature selection to determine which of the robot’s

multiple sensors best predict terrain characteristics. By doing so, the

agent could learn when to use, for example, ladar, IR, and satellite

imagery to best estimate terrain features that matter for predicting

action outcomes.

Acknowledgment

This material is based upon work supported by the National Science

Foundation under grants ITR IIS-0325281 and DGE 0549115.

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

45

REFERENCES

[1] Ronen I. Brafman and Moshe Tennenholtz, ‘R-MAX—a general poly-

nomial time algorithm for near-optimal reinforcement learning’, Jour-

nal of Machine Learning Research, 3, 213–231, (2002).

[2] James Bruce, Tucker Balch, and Manuela Veloso, ‘Fast and inexpen-

sive color image segmentation for interactive robots’, in Proceedings of

IROS-2000, Japan, (October 2000).

[3] James Bruce and Manuela Veloso, ‘Fast and accurate vision-based pat-

tern detection and identification’, in Proceedings of ICRA’03, the 2003

IEEE International Conference on Robotics and Automation, Taiwan,

(May 2003).

[4] Christopher M. Christoudias, Bogdan Georgescu, and Peter Meer,

‘Synergism in low level vision’, in ICPR ’02: Proceedings of the 16

th International Conference on Pattern Recognition (ICPR’02) Volume

4, p. 40150, Washington, DC, USA, (2002). IEEE Computer Society.

[5] J. Crisman and Chuck Thorpe, ‘UNSCARF, a color vision system for

the detection of unstructured roads’, in Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, volume 3, pp. 2496–

2501, (April 1991).

[6] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, ‘Self-

supervised monocular road detection in desert terrain’, in Proceedings

of Robotics: Science and Systems, Philadelphia, USA, (August 2006).

[7] Damien Ernst, Pierre Geurts, and Louis Wehenkel, ‘Tree-based batch

mode reinforcement learning’, J. Mach. Learn. Res., 6, 503–556,

(2005).

[8] Andrew Moore Justin Boyan, ‘Generalization in reinforcement learn-

ing: Safely approximating the value function’, in Neural Information

Processing Systems 7, eds., G. Tesauro, D.S. Touretzky, and T.K. Lee,

pp. 369–376, Cambridge, MA, (1995). The MIT Press.

[9] Rudolph Emil Kalman, ‘A new approach to linear filtering and predic-

tion problems’, Transactions of the ASME–Journal of Basic Engineer-

ing, 82(Series D), 35–45, (1960).

[10] Michael J. Keans and Satinder P. Singh, ‘Near-optimal reinforcement

learning in polynomial time’, Machine Learning, 49(2–3), 209–232,

(2002).

[11] Bethany R. Leffler, Michael L. Littman, and Timothy Edmunds, ‘Effi-

cient reinforcement learning with relocatable action models’, in AAAI-

07: Proceedings of the Twenty-Second Conference on Artificial Intelli-

gence, pp. 572–577, Menlo Park, CA, USA, (2007). The AAAI Press.

[12] Bethany R. Leffler, Michael L. Littman, Alexander L. Strehl, and

Thomas J. Walsh, ‘Efficient exploration with latent structure’, in Pro-

ceedings of Robotics: Science and Systems, Cambridge, USA, (June

2005).

[13] Dean A. Pomerleau, ‘ALVINN: An autonomous land vehicle in a neural

network’, 305–313, (1989).

[14] Christopher Rasmussen, ‘Combining laser range, color, and texture

cues for autonomous road following’, in IEEE International Confer-

ence on Robotics and Automation, (2002).

[15] Alexander A. Sherstov and Peter Stone, ‘Improving action selection in

MDP’s via knowledge transfer’, in Proceedings of the Twentieth Na-

tional Conference on Artificial Intelligence, (July 2005).

[16] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction,

MIT Press, Cambridge, MA, 1998.

[17] Carl Wellington, Aaron Courville, and Anthony (Tony) Stentz, ‘Inter-

acting Markov random fields for simultaneous terrain modeling and

obstacle detection’, in Proceedings of Robotics: Science and Systems,

(June 2005).

1st International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ERLARS 2008)
Patras, Greece, July 22 2008

46

